mirror of
				https://codeberg.org/forgejo/forgejo.git
				synced 2025-11-03 16:01:11 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1017 lines
		
	
	
	
		
			30 KiB
		
	
	
	
		
			Go
		
	
	
	
		
			Vendored
		
	
	
	
			
		
		
	
	
			1017 lines
		
	
	
	
		
			30 KiB
		
	
	
	
		
			Go
		
	
	
	
		
			Vendored
		
	
	
	
// Copyright (c) 2015 Klaus Post, released under MIT License. See LICENSE file.
 | 
						||
 | 
						||
// Package cpuid provides information about the CPU running the current program.
 | 
						||
//
 | 
						||
// CPU features are detected on startup, and kept for fast access through the life of the application.
 | 
						||
// Currently x86 / x64 (AMD64) as well as arm64 is supported.
 | 
						||
//
 | 
						||
// You can access the CPU information by accessing the shared CPU variable of the cpuid library.
 | 
						||
//
 | 
						||
// Package home: https://github.com/klauspost/cpuid
 | 
						||
package cpuid
 | 
						||
 | 
						||
import (
 | 
						||
	"flag"
 | 
						||
	"fmt"
 | 
						||
	"math"
 | 
						||
	"os"
 | 
						||
	"strings"
 | 
						||
)
 | 
						||
 | 
						||
// AMD refererence: https://www.amd.com/system/files/TechDocs/25481.pdf
 | 
						||
// and Processor Programming Reference (PPR)
 | 
						||
 | 
						||
// Vendor is a representation of a CPU vendor.
 | 
						||
type Vendor int
 | 
						||
 | 
						||
const (
 | 
						||
	VendorUnknown Vendor = iota
 | 
						||
	Intel
 | 
						||
	AMD
 | 
						||
	VIA
 | 
						||
	Transmeta
 | 
						||
	NSC
 | 
						||
	KVM  // Kernel-based Virtual Machine
 | 
						||
	MSVM // Microsoft Hyper-V or Windows Virtual PC
 | 
						||
	VMware
 | 
						||
	XenHVM
 | 
						||
	Bhyve
 | 
						||
	Hygon
 | 
						||
	SiS
 | 
						||
	RDC
 | 
						||
 | 
						||
	Ampere
 | 
						||
	ARM
 | 
						||
	Broadcom
 | 
						||
	Cavium
 | 
						||
	DEC
 | 
						||
	Fujitsu
 | 
						||
	Infineon
 | 
						||
	Motorola
 | 
						||
	NVIDIA
 | 
						||
	AMCC
 | 
						||
	Qualcomm
 | 
						||
	Marvell
 | 
						||
 | 
						||
	lastVendor
 | 
						||
)
 | 
						||
 | 
						||
//go:generate stringer -type=FeatureID,Vendor
 | 
						||
 | 
						||
// FeatureID is the ID of a specific cpu feature.
 | 
						||
type FeatureID int
 | 
						||
 | 
						||
const (
 | 
						||
	// Keep index -1 as unknown
 | 
						||
	UNKNOWN = -1
 | 
						||
 | 
						||
	// Add features
 | 
						||
	ADX                FeatureID = iota // Intel ADX (Multi-Precision Add-Carry Instruction Extensions)
 | 
						||
	AESNI                               // Advanced Encryption Standard New Instructions
 | 
						||
	AMD3DNOW                            // AMD 3DNOW
 | 
						||
	AMD3DNOWEXT                         // AMD 3DNowExt
 | 
						||
	AMXBF16                             // Tile computational operations on BFLOAT16 numbers
 | 
						||
	AMXINT8                             // Tile computational operations on 8-bit integers
 | 
						||
	AMXTILE                             // Tile architecture
 | 
						||
	AVX                                 // AVX functions
 | 
						||
	AVX2                                // AVX2 functions
 | 
						||
	AVX512BF16                          // AVX-512 BFLOAT16 Instructions
 | 
						||
	AVX512BITALG                        // AVX-512 Bit Algorithms
 | 
						||
	AVX512BW                            // AVX-512 Byte and Word Instructions
 | 
						||
	AVX512CD                            // AVX-512 Conflict Detection Instructions
 | 
						||
	AVX512DQ                            // AVX-512 Doubleword and Quadword Instructions
 | 
						||
	AVX512ER                            // AVX-512 Exponential and Reciprocal Instructions
 | 
						||
	AVX512F                             // AVX-512 Foundation
 | 
						||
	AVX512IFMA                          // AVX-512 Integer Fused Multiply-Add Instructions
 | 
						||
	AVX512PF                            // AVX-512 Prefetch Instructions
 | 
						||
	AVX512VBMI                          // AVX-512 Vector Bit Manipulation Instructions
 | 
						||
	AVX512VBMI2                         // AVX-512 Vector Bit Manipulation Instructions, Version 2
 | 
						||
	AVX512VL                            // AVX-512 Vector Length Extensions
 | 
						||
	AVX512VNNI                          // AVX-512 Vector Neural Network Instructions
 | 
						||
	AVX512VP2INTERSECT                  // AVX-512 Intersect for D/Q
 | 
						||
	AVX512VPOPCNTDQ                     // AVX-512 Vector Population Count Doubleword and Quadword
 | 
						||
	AVXSLOW                             // Indicates the CPU performs 2 128 bit operations instead of one.
 | 
						||
	BMI1                                // Bit Manipulation Instruction Set 1
 | 
						||
	BMI2                                // Bit Manipulation Instruction Set 2
 | 
						||
	CLDEMOTE                            // Cache Line Demote
 | 
						||
	CLMUL                               // Carry-less Multiplication
 | 
						||
	CMOV                                // i686 CMOV
 | 
						||
	CX16                                // CMPXCHG16B Instruction
 | 
						||
	ENQCMD                              // Enqueue Command
 | 
						||
	ERMS                                // Enhanced REP MOVSB/STOSB
 | 
						||
	F16C                                // Half-precision floating-point conversion
 | 
						||
	FMA3                                // Intel FMA 3. Does not imply AVX.
 | 
						||
	FMA4                                // Bulldozer FMA4 functions
 | 
						||
	GFNI                                // Galois Field New Instructions
 | 
						||
	HLE                                 // Hardware Lock Elision
 | 
						||
	HTT                                 // Hyperthreading (enabled)
 | 
						||
	HYPERVISOR                          // This bit has been reserved by Intel & AMD for use by hypervisors
 | 
						||
	IBPB                                // Indirect Branch Restricted Speculation (IBRS) and Indirect Branch Predictor Barrier (IBPB)
 | 
						||
	IBS                                 // Instruction Based Sampling (AMD)
 | 
						||
	IBSBRNTRGT                          // Instruction Based Sampling Feature (AMD)
 | 
						||
	IBSFETCHSAM                         // Instruction Based Sampling Feature (AMD)
 | 
						||
	IBSFFV                              // Instruction Based Sampling Feature (AMD)
 | 
						||
	IBSOPCNT                            // Instruction Based Sampling Feature (AMD)
 | 
						||
	IBSOPCNTEXT                         // Instruction Based Sampling Feature (AMD)
 | 
						||
	IBSOPSAM                            // Instruction Based Sampling Feature (AMD)
 | 
						||
	IBSRDWROPCNT                        // Instruction Based Sampling Feature (AMD)
 | 
						||
	IBSRIPINVALIDCHK                    // Instruction Based Sampling Feature (AMD)
 | 
						||
	LZCNT                               // LZCNT instruction
 | 
						||
	MMX                                 // standard MMX
 | 
						||
	MMXEXT                              // SSE integer functions or AMD MMX ext
 | 
						||
	MOVDIR64B                           // Move 64 Bytes as Direct Store
 | 
						||
	MOVDIRI                             // Move Doubleword as Direct Store
 | 
						||
	MPX                                 // Intel MPX (Memory Protection Extensions)
 | 
						||
	NX                                  // NX (No-Execute) bit
 | 
						||
	POPCNT                              // POPCNT instruction
 | 
						||
	RDRAND                              // RDRAND instruction is available
 | 
						||
	RDSEED                              // RDSEED instruction is available
 | 
						||
	RDTSCP                              // RDTSCP Instruction
 | 
						||
	RTM                                 // Restricted Transactional Memory
 | 
						||
	SERIALIZE                           // Serialize Instruction Execution
 | 
						||
	SGX                                 // Software Guard Extensions
 | 
						||
	SGXLC                               // Software Guard Extensions Launch Control
 | 
						||
	SHA                                 // Intel SHA Extensions
 | 
						||
	SSE                                 // SSE functions
 | 
						||
	SSE2                                // P4 SSE functions
 | 
						||
	SSE3                                // Prescott SSE3 functions
 | 
						||
	SSE4                                // Penryn SSE4.1 functions
 | 
						||
	SSE42                               // Nehalem SSE4.2 functions
 | 
						||
	SSE4A                               // AMD Barcelona microarchitecture SSE4a instructions
 | 
						||
	SSSE3                               // Conroe SSSE3 functions
 | 
						||
	STIBP                               // Single Thread Indirect Branch Predictors
 | 
						||
	TBM                                 // AMD Trailing Bit Manipulation
 | 
						||
	TSXLDTRK                            // Intel TSX Suspend Load Address Tracking
 | 
						||
	VAES                                // Vector AES
 | 
						||
	VMX                                 // Virtual Machine Extensions
 | 
						||
	VPCLMULQDQ                          // Carry-Less Multiplication Quadword
 | 
						||
	WAITPKG                             // TPAUSE, UMONITOR, UMWAIT
 | 
						||
	WBNOINVD                            // Write Back and Do Not Invalidate Cache
 | 
						||
	XOP                                 // Bulldozer XOP functions
 | 
						||
 | 
						||
	// ARM features:
 | 
						||
	AESARM   // AES instructions
 | 
						||
	ARMCPUID // Some CPU ID registers readable at user-level
 | 
						||
	ASIMD    // Advanced SIMD
 | 
						||
	ASIMDDP  // SIMD Dot Product
 | 
						||
	ASIMDHP  // Advanced SIMD half-precision floating point
 | 
						||
	ASIMDRDM // Rounding Double Multiply Accumulate/Subtract (SQRDMLAH/SQRDMLSH)
 | 
						||
	ATOMICS  // Large System Extensions (LSE)
 | 
						||
	CRC32    // CRC32/CRC32C instructions
 | 
						||
	DCPOP    // Data cache clean to Point of Persistence (DC CVAP)
 | 
						||
	EVTSTRM  // Generic timer
 | 
						||
	FCMA     // Floatin point complex number addition and multiplication
 | 
						||
	FP       // Single-precision and double-precision floating point
 | 
						||
	FPHP     // Half-precision floating point
 | 
						||
	GPA      // Generic Pointer Authentication
 | 
						||
	JSCVT    // Javascript-style double->int convert (FJCVTZS)
 | 
						||
	LRCPC    // Weaker release consistency (LDAPR, etc)
 | 
						||
	PMULL    // Polynomial Multiply instructions (PMULL/PMULL2)
 | 
						||
	SHA1     // SHA-1 instructions (SHA1C, etc)
 | 
						||
	SHA2     // SHA-2 instructions (SHA256H, etc)
 | 
						||
	SHA3     // SHA-3 instructions (EOR3, RAXI, XAR, BCAX)
 | 
						||
	SHA512   // SHA512 instructions
 | 
						||
	SM3      // SM3 instructions
 | 
						||
	SM4      // SM4 instructions
 | 
						||
	SVE      // Scalable Vector Extension
 | 
						||
 | 
						||
	// Keep it last. It automatically defines the size of []flagSet
 | 
						||
	lastID
 | 
						||
 | 
						||
	firstID FeatureID = UNKNOWN + 1
 | 
						||
)
 | 
						||
 | 
						||
// CPUInfo contains information about the detected system CPU.
 | 
						||
type CPUInfo struct {
 | 
						||
	BrandName      string  // Brand name reported by the CPU
 | 
						||
	VendorID       Vendor  // Comparable CPU vendor ID
 | 
						||
	VendorString   string  // Raw vendor string.
 | 
						||
	featureSet     flagSet // Features of the CPU
 | 
						||
	PhysicalCores  int     // Number of physical processor cores in your CPU. Will be 0 if undetectable.
 | 
						||
	ThreadsPerCore int     // Number of threads per physical core. Will be 1 if undetectable.
 | 
						||
	LogicalCores   int     // Number of physical cores times threads that can run on each core through the use of hyperthreading. Will be 0 if undetectable.
 | 
						||
	Family         int     // CPU family number
 | 
						||
	Model          int     // CPU model number
 | 
						||
	CacheLine      int     // Cache line size in bytes. Will be 0 if undetectable.
 | 
						||
	Hz             int64   // Clock speed, if known, 0 otherwise
 | 
						||
	Cache          struct {
 | 
						||
		L1I int // L1 Instruction Cache (per core or shared). Will be -1 if undetected
 | 
						||
		L1D int // L1 Data Cache (per core or shared). Will be -1 if undetected
 | 
						||
		L2  int // L2 Cache (per core or shared). Will be -1 if undetected
 | 
						||
		L3  int // L3 Cache (per core, per ccx or shared). Will be -1 if undetected
 | 
						||
	}
 | 
						||
	SGX       SGXSupport
 | 
						||
	maxFunc   uint32
 | 
						||
	maxExFunc uint32
 | 
						||
}
 | 
						||
 | 
						||
var cpuid func(op uint32) (eax, ebx, ecx, edx uint32)
 | 
						||
var cpuidex func(op, op2 uint32) (eax, ebx, ecx, edx uint32)
 | 
						||
var xgetbv func(index uint32) (eax, edx uint32)
 | 
						||
var rdtscpAsm func() (eax, ebx, ecx, edx uint32)
 | 
						||
 | 
						||
// CPU contains information about the CPU as detected on startup,
 | 
						||
// or when Detect last was called.
 | 
						||
//
 | 
						||
// Use this as the primary entry point to you data.
 | 
						||
var CPU CPUInfo
 | 
						||
 | 
						||
func init() {
 | 
						||
	initCPU()
 | 
						||
	Detect()
 | 
						||
}
 | 
						||
 | 
						||
// Detect will re-detect current CPU info.
 | 
						||
// This will replace the content of the exported CPU variable.
 | 
						||
//
 | 
						||
// Unless you expect the CPU to change while you are running your program
 | 
						||
// you should not need to call this function.
 | 
						||
// If you call this, you must ensure that no other goroutine is accessing the
 | 
						||
// exported CPU variable.
 | 
						||
func Detect() {
 | 
						||
	// Set defaults
 | 
						||
	CPU.ThreadsPerCore = 1
 | 
						||
	CPU.Cache.L1I = -1
 | 
						||
	CPU.Cache.L1D = -1
 | 
						||
	CPU.Cache.L2 = -1
 | 
						||
	CPU.Cache.L3 = -1
 | 
						||
	safe := true
 | 
						||
	if detectArmFlag != nil {
 | 
						||
		safe = !*detectArmFlag
 | 
						||
	}
 | 
						||
	addInfo(&CPU, safe)
 | 
						||
	if displayFeats != nil && *displayFeats {
 | 
						||
		fmt.Println("cpu features:", strings.Join(CPU.FeatureSet(), ","))
 | 
						||
		// Exit with non-zero so tests will print value.
 | 
						||
		os.Exit(1)
 | 
						||
	}
 | 
						||
	if disableFlag != nil {
 | 
						||
		s := strings.Split(*disableFlag, ",")
 | 
						||
		for _, feat := range s {
 | 
						||
			feat := ParseFeature(strings.TrimSpace(feat))
 | 
						||
			if feat != UNKNOWN {
 | 
						||
				CPU.featureSet.unset(feat)
 | 
						||
			}
 | 
						||
		}
 | 
						||
	}
 | 
						||
}
 | 
						||
 | 
						||
// DetectARM will detect ARM64 features.
 | 
						||
// This is NOT done automatically since it can potentially crash
 | 
						||
// if the OS does not handle the command.
 | 
						||
// If in the future this can be done safely this function may not
 | 
						||
// do anything.
 | 
						||
func DetectARM() {
 | 
						||
	addInfo(&CPU, false)
 | 
						||
}
 | 
						||
 | 
						||
var detectArmFlag *bool
 | 
						||
var displayFeats *bool
 | 
						||
var disableFlag *string
 | 
						||
 | 
						||
// Flags will enable flags.
 | 
						||
// This must be called *before* flag.Parse AND
 | 
						||
// Detect must be called after the flags have been parsed.
 | 
						||
// Note that this means that any detection used in init() functions
 | 
						||
// will not contain these flags.
 | 
						||
func Flags() {
 | 
						||
	disableFlag = flag.String("cpu.disable", "", "disable cpu features; comma separated list")
 | 
						||
	displayFeats = flag.Bool("cpu.features", false, "lists cpu features and exits")
 | 
						||
	detectArmFlag = flag.Bool("cpu.arm", false, "allow ARM features to be detected; can potentially crash")
 | 
						||
}
 | 
						||
 | 
						||
// Supports returns whether the CPU supports all of the requested features.
 | 
						||
func (c CPUInfo) Supports(ids ...FeatureID) bool {
 | 
						||
	for _, id := range ids {
 | 
						||
		if !c.featureSet.inSet(id) {
 | 
						||
			return false
 | 
						||
		}
 | 
						||
	}
 | 
						||
	return true
 | 
						||
}
 | 
						||
 | 
						||
// Has allows for checking a single feature.
 | 
						||
// Should be inlined by the compiler.
 | 
						||
func (c CPUInfo) Has(id FeatureID) bool {
 | 
						||
	return c.featureSet.inSet(id)
 | 
						||
}
 | 
						||
 | 
						||
// Disable will disable one or several features.
 | 
						||
func (c *CPUInfo) Disable(ids ...FeatureID) bool {
 | 
						||
	for _, id := range ids {
 | 
						||
		c.featureSet.unset(id)
 | 
						||
	}
 | 
						||
	return true
 | 
						||
}
 | 
						||
 | 
						||
// Enable will disable one or several features even if they were undetected.
 | 
						||
// This is of course not recommended for obvious reasons.
 | 
						||
func (c *CPUInfo) Enable(ids ...FeatureID) bool {
 | 
						||
	for _, id := range ids {
 | 
						||
		c.featureSet.set(id)
 | 
						||
	}
 | 
						||
	return true
 | 
						||
}
 | 
						||
 | 
						||
// IsVendor returns true if vendor is recognized as Intel
 | 
						||
func (c CPUInfo) IsVendor(v Vendor) bool {
 | 
						||
	return c.VendorID == v
 | 
						||
}
 | 
						||
 | 
						||
func (c CPUInfo) FeatureSet() []string {
 | 
						||
	s := make([]string, 0)
 | 
						||
	for _, f := range c.featureSet.Strings() {
 | 
						||
		s = append(s, f)
 | 
						||
	}
 | 
						||
	return s
 | 
						||
}
 | 
						||
 | 
						||
// RTCounter returns the 64-bit time-stamp counter
 | 
						||
// Uses the RDTSCP instruction. The value 0 is returned
 | 
						||
// if the CPU does not support the instruction.
 | 
						||
func (c CPUInfo) RTCounter() uint64 {
 | 
						||
	if !c.Supports(RDTSCP) {
 | 
						||
		return 0
 | 
						||
	}
 | 
						||
	a, _, _, d := rdtscpAsm()
 | 
						||
	return uint64(a) | (uint64(d) << 32)
 | 
						||
}
 | 
						||
 | 
						||
// Ia32TscAux returns the IA32_TSC_AUX part of the RDTSCP.
 | 
						||
// This variable is OS dependent, but on Linux contains information
 | 
						||
// about the current cpu/core the code is running on.
 | 
						||
// If the RDTSCP instruction isn't supported on the CPU, the value 0 is returned.
 | 
						||
func (c CPUInfo) Ia32TscAux() uint32 {
 | 
						||
	if !c.Supports(RDTSCP) {
 | 
						||
		return 0
 | 
						||
	}
 | 
						||
	_, _, ecx, _ := rdtscpAsm()
 | 
						||
	return ecx
 | 
						||
}
 | 
						||
 | 
						||
// LogicalCPU will return the Logical CPU the code is currently executing on.
 | 
						||
// This is likely to change when the OS re-schedules the running thread
 | 
						||
// to another CPU.
 | 
						||
// If the current core cannot be detected, -1 will be returned.
 | 
						||
func (c CPUInfo) LogicalCPU() int {
 | 
						||
	if c.maxFunc < 1 {
 | 
						||
		return -1
 | 
						||
	}
 | 
						||
	_, ebx, _, _ := cpuid(1)
 | 
						||
	return int(ebx >> 24)
 | 
						||
}
 | 
						||
 | 
						||
// hertz tries to compute the clock speed of the CPU. If leaf 15 is
 | 
						||
// supported, use it, otherwise parse the brand string. Yes, really.
 | 
						||
func hertz(model string) int64 {
 | 
						||
	mfi := maxFunctionID()
 | 
						||
	if mfi >= 0x15 {
 | 
						||
		eax, ebx, ecx, _ := cpuid(0x15)
 | 
						||
		if eax != 0 && ebx != 0 && ecx != 0 {
 | 
						||
			return int64((int64(ecx) * int64(ebx)) / int64(eax))
 | 
						||
		}
 | 
						||
	}
 | 
						||
	// computeHz determines the official rated speed of a CPU from its brand
 | 
						||
	// string. This insanity is *actually the official documented way to do
 | 
						||
	// this according to Intel*, prior to leaf 0x15 existing. The official
 | 
						||
	// documentation only shows this working for exactly `x.xx` or `xxxx`
 | 
						||
	// cases, e.g., `2.50GHz` or `1300MHz`; this parser will accept other
 | 
						||
	// sizes.
 | 
						||
	hz := strings.LastIndex(model, "Hz")
 | 
						||
	if hz < 3 {
 | 
						||
		return 0
 | 
						||
	}
 | 
						||
	var multiplier int64
 | 
						||
	switch model[hz-1] {
 | 
						||
	case 'M':
 | 
						||
		multiplier = 1000 * 1000
 | 
						||
	case 'G':
 | 
						||
		multiplier = 1000 * 1000 * 1000
 | 
						||
	case 'T':
 | 
						||
		multiplier = 1000 * 1000 * 1000 * 1000
 | 
						||
	}
 | 
						||
	if multiplier == 0 {
 | 
						||
		return 0
 | 
						||
	}
 | 
						||
	freq := int64(0)
 | 
						||
	divisor := int64(0)
 | 
						||
	decimalShift := int64(1)
 | 
						||
	var i int
 | 
						||
	for i = hz - 2; i >= 0 && model[i] != ' '; i-- {
 | 
						||
		if model[i] >= '0' && model[i] <= '9' {
 | 
						||
			freq += int64(model[i]-'0') * decimalShift
 | 
						||
			decimalShift *= 10
 | 
						||
		} else if model[i] == '.' {
 | 
						||
			if divisor != 0 {
 | 
						||
				return 0
 | 
						||
			}
 | 
						||
			divisor = decimalShift
 | 
						||
		} else {
 | 
						||
			return 0
 | 
						||
		}
 | 
						||
	}
 | 
						||
	// we didn't find a space
 | 
						||
	if i < 0 {
 | 
						||
		return 0
 | 
						||
	}
 | 
						||
	if divisor != 0 {
 | 
						||
		return (freq * multiplier) / divisor
 | 
						||
	}
 | 
						||
	return freq * multiplier
 | 
						||
}
 | 
						||
 | 
						||
// VM Will return true if the cpu id indicates we are in
 | 
						||
// a virtual machine.
 | 
						||
func (c CPUInfo) VM() bool {
 | 
						||
	return CPU.featureSet.inSet(HYPERVISOR)
 | 
						||
}
 | 
						||
 | 
						||
// flags contains detected cpu features and characteristics
 | 
						||
type flags uint64
 | 
						||
 | 
						||
// log2(bits_in_uint64)
 | 
						||
const flagBitsLog2 = 6
 | 
						||
const flagBits = 1 << flagBitsLog2
 | 
						||
const flagMask = flagBits - 1
 | 
						||
 | 
						||
// flagSet contains detected cpu features and characteristics in an array of flags
 | 
						||
type flagSet [(lastID + flagMask) / flagBits]flags
 | 
						||
 | 
						||
func (s flagSet) inSet(feat FeatureID) bool {
 | 
						||
	return s[feat>>flagBitsLog2]&(1<<(feat&flagMask)) != 0
 | 
						||
}
 | 
						||
 | 
						||
func (s *flagSet) set(feat FeatureID) {
 | 
						||
	s[feat>>flagBitsLog2] |= 1 << (feat & flagMask)
 | 
						||
}
 | 
						||
 | 
						||
// setIf will set a feature if boolean is true.
 | 
						||
func (s *flagSet) setIf(cond bool, features ...FeatureID) {
 | 
						||
	if cond {
 | 
						||
		for _, offset := range features {
 | 
						||
			s[offset>>flagBitsLog2] |= 1 << (offset & flagMask)
 | 
						||
		}
 | 
						||
	}
 | 
						||
}
 | 
						||
 | 
						||
func (s *flagSet) unset(offset FeatureID) {
 | 
						||
	bit := flags(1 << (offset & flagMask))
 | 
						||
	s[offset>>flagBitsLog2] = s[offset>>flagBitsLog2] & ^bit
 | 
						||
}
 | 
						||
 | 
						||
// or with another flagset.
 | 
						||
func (s *flagSet) or(other flagSet) {
 | 
						||
	for i, v := range other[:] {
 | 
						||
		s[i] |= v
 | 
						||
	}
 | 
						||
}
 | 
						||
 | 
						||
// ParseFeature will parse the string and return the ID of the matching feature.
 | 
						||
// Will return UNKNOWN if not found.
 | 
						||
func ParseFeature(s string) FeatureID {
 | 
						||
	s = strings.ToUpper(s)
 | 
						||
	for i := firstID; i < lastID; i++ {
 | 
						||
		if i.String() == s {
 | 
						||
			return i
 | 
						||
		}
 | 
						||
	}
 | 
						||
	return UNKNOWN
 | 
						||
}
 | 
						||
 | 
						||
// Strings returns an array of the detected features for FlagsSet.
 | 
						||
func (s flagSet) Strings() []string {
 | 
						||
	if len(s) == 0 {
 | 
						||
		return []string{""}
 | 
						||
	}
 | 
						||
	r := make([]string, 0)
 | 
						||
	for i := firstID; i < lastID; i++ {
 | 
						||
		if s.inSet(i) {
 | 
						||
			r = append(r, i.String())
 | 
						||
		}
 | 
						||
	}
 | 
						||
	return r
 | 
						||
}
 | 
						||
 | 
						||
func maxExtendedFunction() uint32 {
 | 
						||
	eax, _, _, _ := cpuid(0x80000000)
 | 
						||
	return eax
 | 
						||
}
 | 
						||
 | 
						||
func maxFunctionID() uint32 {
 | 
						||
	a, _, _, _ := cpuid(0)
 | 
						||
	return a
 | 
						||
}
 | 
						||
 | 
						||
func brandName() string {
 | 
						||
	if maxExtendedFunction() >= 0x80000004 {
 | 
						||
		v := make([]uint32, 0, 48)
 | 
						||
		for i := uint32(0); i < 3; i++ {
 | 
						||
			a, b, c, d := cpuid(0x80000002 + i)
 | 
						||
			v = append(v, a, b, c, d)
 | 
						||
		}
 | 
						||
		return strings.Trim(string(valAsString(v...)), " ")
 | 
						||
	}
 | 
						||
	return "unknown"
 | 
						||
}
 | 
						||
 | 
						||
func threadsPerCore() int {
 | 
						||
	mfi := maxFunctionID()
 | 
						||
	vend, _ := vendorID()
 | 
						||
 | 
						||
	if mfi < 0x4 || (vend != Intel && vend != AMD) {
 | 
						||
		return 1
 | 
						||
	}
 | 
						||
 | 
						||
	if mfi < 0xb {
 | 
						||
		if vend != Intel {
 | 
						||
			return 1
 | 
						||
		}
 | 
						||
		_, b, _, d := cpuid(1)
 | 
						||
		if (d & (1 << 28)) != 0 {
 | 
						||
			// v will contain logical core count
 | 
						||
			v := (b >> 16) & 255
 | 
						||
			if v > 1 {
 | 
						||
				a4, _, _, _ := cpuid(4)
 | 
						||
				// physical cores
 | 
						||
				v2 := (a4 >> 26) + 1
 | 
						||
				if v2 > 0 {
 | 
						||
					return int(v) / int(v2)
 | 
						||
				}
 | 
						||
			}
 | 
						||
		}
 | 
						||
		return 1
 | 
						||
	}
 | 
						||
	_, b, _, _ := cpuidex(0xb, 0)
 | 
						||
	if b&0xffff == 0 {
 | 
						||
		if vend == AMD {
 | 
						||
			// Workaround for AMD returning 0, assume 2 if >= Zen 2
 | 
						||
			// It will be more correct than not.
 | 
						||
			fam, _ := familyModel()
 | 
						||
			_, _, _, d := cpuid(1)
 | 
						||
			if (d&(1<<28)) != 0 && fam >= 23 {
 | 
						||
				return 2
 | 
						||
			}
 | 
						||
		}
 | 
						||
		return 1
 | 
						||
	}
 | 
						||
	return int(b & 0xffff)
 | 
						||
}
 | 
						||
 | 
						||
func logicalCores() int {
 | 
						||
	mfi := maxFunctionID()
 | 
						||
	v, _ := vendorID()
 | 
						||
	switch v {
 | 
						||
	case Intel:
 | 
						||
		// Use this on old Intel processors
 | 
						||
		if mfi < 0xb {
 | 
						||
			if mfi < 1 {
 | 
						||
				return 0
 | 
						||
			}
 | 
						||
			// CPUID.1:EBX[23:16] represents the maximum number of addressable IDs (initial APIC ID)
 | 
						||
			// that can be assigned to logical processors in a physical package.
 | 
						||
			// The value may not be the same as the number of logical processors that are present in the hardware of a physical package.
 | 
						||
			_, ebx, _, _ := cpuid(1)
 | 
						||
			logical := (ebx >> 16) & 0xff
 | 
						||
			return int(logical)
 | 
						||
		}
 | 
						||
		_, b, _, _ := cpuidex(0xb, 1)
 | 
						||
		return int(b & 0xffff)
 | 
						||
	case AMD, Hygon:
 | 
						||
		_, b, _, _ := cpuid(1)
 | 
						||
		return int((b >> 16) & 0xff)
 | 
						||
	default:
 | 
						||
		return 0
 | 
						||
	}
 | 
						||
}
 | 
						||
 | 
						||
func familyModel() (int, int) {
 | 
						||
	if maxFunctionID() < 0x1 {
 | 
						||
		return 0, 0
 | 
						||
	}
 | 
						||
	eax, _, _, _ := cpuid(1)
 | 
						||
	family := ((eax >> 8) & 0xf) + ((eax >> 20) & 0xff)
 | 
						||
	model := ((eax >> 4) & 0xf) + ((eax >> 12) & 0xf0)
 | 
						||
	return int(family), int(model)
 | 
						||
}
 | 
						||
 | 
						||
func physicalCores() int {
 | 
						||
	v, _ := vendorID()
 | 
						||
	switch v {
 | 
						||
	case Intel:
 | 
						||
		return logicalCores() / threadsPerCore()
 | 
						||
	case AMD, Hygon:
 | 
						||
		lc := logicalCores()
 | 
						||
		tpc := threadsPerCore()
 | 
						||
		if lc > 0 && tpc > 0 {
 | 
						||
			return lc / tpc
 | 
						||
		}
 | 
						||
 | 
						||
		// The following is inaccurate on AMD EPYC 7742 64-Core Processor
 | 
						||
		if maxExtendedFunction() >= 0x80000008 {
 | 
						||
			_, _, c, _ := cpuid(0x80000008)
 | 
						||
			if c&0xff > 0 {
 | 
						||
				return int(c&0xff) + 1
 | 
						||
			}
 | 
						||
		}
 | 
						||
	}
 | 
						||
	return 0
 | 
						||
}
 | 
						||
 | 
						||
// Except from http://en.wikipedia.org/wiki/CPUID#EAX.3D0:_Get_vendor_ID
 | 
						||
var vendorMapping = map[string]Vendor{
 | 
						||
	"AMDisbetter!": AMD,
 | 
						||
	"AuthenticAMD": AMD,
 | 
						||
	"CentaurHauls": VIA,
 | 
						||
	"GenuineIntel": Intel,
 | 
						||
	"TransmetaCPU": Transmeta,
 | 
						||
	"GenuineTMx86": Transmeta,
 | 
						||
	"Geode by NSC": NSC,
 | 
						||
	"VIA VIA VIA ": VIA,
 | 
						||
	"KVMKVMKVMKVM": KVM,
 | 
						||
	"Microsoft Hv": MSVM,
 | 
						||
	"VMwareVMware": VMware,
 | 
						||
	"XenVMMXenVMM": XenHVM,
 | 
						||
	"bhyve bhyve ": Bhyve,
 | 
						||
	"HygonGenuine": Hygon,
 | 
						||
	"Vortex86 SoC": SiS,
 | 
						||
	"SiS SiS SiS ": SiS,
 | 
						||
	"RiseRiseRise": SiS,
 | 
						||
	"Genuine  RDC": RDC,
 | 
						||
}
 | 
						||
 | 
						||
func vendorID() (Vendor, string) {
 | 
						||
	_, b, c, d := cpuid(0)
 | 
						||
	v := string(valAsString(b, d, c))
 | 
						||
	vend, ok := vendorMapping[v]
 | 
						||
	if !ok {
 | 
						||
		return VendorUnknown, v
 | 
						||
	}
 | 
						||
	return vend, v
 | 
						||
}
 | 
						||
 | 
						||
func cacheLine() int {
 | 
						||
	if maxFunctionID() < 0x1 {
 | 
						||
		return 0
 | 
						||
	}
 | 
						||
 | 
						||
	_, ebx, _, _ := cpuid(1)
 | 
						||
	cache := (ebx & 0xff00) >> 5 // cflush size
 | 
						||
	if cache == 0 && maxExtendedFunction() >= 0x80000006 {
 | 
						||
		_, _, ecx, _ := cpuid(0x80000006)
 | 
						||
		cache = ecx & 0xff // cacheline size
 | 
						||
	}
 | 
						||
	// TODO: Read from Cache and TLB Information
 | 
						||
	return int(cache)
 | 
						||
}
 | 
						||
 | 
						||
func (c *CPUInfo) cacheSize() {
 | 
						||
	c.Cache.L1D = -1
 | 
						||
	c.Cache.L1I = -1
 | 
						||
	c.Cache.L2 = -1
 | 
						||
	c.Cache.L3 = -1
 | 
						||
	vendor, _ := vendorID()
 | 
						||
	switch vendor {
 | 
						||
	case Intel:
 | 
						||
		if maxFunctionID() < 4 {
 | 
						||
			return
 | 
						||
		}
 | 
						||
		for i := uint32(0); ; i++ {
 | 
						||
			eax, ebx, ecx, _ := cpuidex(4, i)
 | 
						||
			cacheType := eax & 15
 | 
						||
			if cacheType == 0 {
 | 
						||
				break
 | 
						||
			}
 | 
						||
			cacheLevel := (eax >> 5) & 7
 | 
						||
			coherency := int(ebx&0xfff) + 1
 | 
						||
			partitions := int((ebx>>12)&0x3ff) + 1
 | 
						||
			associativity := int((ebx>>22)&0x3ff) + 1
 | 
						||
			sets := int(ecx) + 1
 | 
						||
			size := associativity * partitions * coherency * sets
 | 
						||
			switch cacheLevel {
 | 
						||
			case 1:
 | 
						||
				if cacheType == 1 {
 | 
						||
					// 1 = Data Cache
 | 
						||
					c.Cache.L1D = size
 | 
						||
				} else if cacheType == 2 {
 | 
						||
					// 2 = Instruction Cache
 | 
						||
					c.Cache.L1I = size
 | 
						||
				} else {
 | 
						||
					if c.Cache.L1D < 0 {
 | 
						||
						c.Cache.L1I = size
 | 
						||
					}
 | 
						||
					if c.Cache.L1I < 0 {
 | 
						||
						c.Cache.L1I = size
 | 
						||
					}
 | 
						||
				}
 | 
						||
			case 2:
 | 
						||
				c.Cache.L2 = size
 | 
						||
			case 3:
 | 
						||
				c.Cache.L3 = size
 | 
						||
			}
 | 
						||
		}
 | 
						||
	case AMD, Hygon:
 | 
						||
		// Untested.
 | 
						||
		if maxExtendedFunction() < 0x80000005 {
 | 
						||
			return
 | 
						||
		}
 | 
						||
		_, _, ecx, edx := cpuid(0x80000005)
 | 
						||
		c.Cache.L1D = int(((ecx >> 24) & 0xFF) * 1024)
 | 
						||
		c.Cache.L1I = int(((edx >> 24) & 0xFF) * 1024)
 | 
						||
 | 
						||
		if maxExtendedFunction() < 0x80000006 {
 | 
						||
			return
 | 
						||
		}
 | 
						||
		_, _, ecx, _ = cpuid(0x80000006)
 | 
						||
		c.Cache.L2 = int(((ecx >> 16) & 0xFFFF) * 1024)
 | 
						||
 | 
						||
		// CPUID Fn8000_001D_EAX_x[N:0] Cache Properties
 | 
						||
		if maxExtendedFunction() < 0x8000001D {
 | 
						||
			return
 | 
						||
		}
 | 
						||
		for i := uint32(0); i < math.MaxUint32; i++ {
 | 
						||
			eax, ebx, ecx, _ := cpuidex(0x8000001D, i)
 | 
						||
 | 
						||
			level := (eax >> 5) & 7
 | 
						||
			cacheNumSets := ecx + 1
 | 
						||
			cacheLineSize := 1 + (ebx & 2047)
 | 
						||
			cachePhysPartitions := 1 + ((ebx >> 12) & 511)
 | 
						||
			cacheNumWays := 1 + ((ebx >> 22) & 511)
 | 
						||
 | 
						||
			typ := eax & 15
 | 
						||
			size := int(cacheNumSets * cacheLineSize * cachePhysPartitions * cacheNumWays)
 | 
						||
			if typ == 0 {
 | 
						||
				return
 | 
						||
			}
 | 
						||
 | 
						||
			switch level {
 | 
						||
			case 1:
 | 
						||
				switch typ {
 | 
						||
				case 1:
 | 
						||
					// Data cache
 | 
						||
					c.Cache.L1D = size
 | 
						||
				case 2:
 | 
						||
					// Inst cache
 | 
						||
					c.Cache.L1I = size
 | 
						||
				default:
 | 
						||
					if c.Cache.L1D < 0 {
 | 
						||
						c.Cache.L1I = size
 | 
						||
					}
 | 
						||
					if c.Cache.L1I < 0 {
 | 
						||
						c.Cache.L1I = size
 | 
						||
					}
 | 
						||
				}
 | 
						||
			case 2:
 | 
						||
				c.Cache.L2 = size
 | 
						||
			case 3:
 | 
						||
				c.Cache.L3 = size
 | 
						||
			}
 | 
						||
		}
 | 
						||
	}
 | 
						||
 | 
						||
	return
 | 
						||
}
 | 
						||
 | 
						||
type SGXEPCSection struct {
 | 
						||
	BaseAddress uint64
 | 
						||
	EPCSize     uint64
 | 
						||
}
 | 
						||
 | 
						||
type SGXSupport struct {
 | 
						||
	Available           bool
 | 
						||
	LaunchControl       bool
 | 
						||
	SGX1Supported       bool
 | 
						||
	SGX2Supported       bool
 | 
						||
	MaxEnclaveSizeNot64 int64
 | 
						||
	MaxEnclaveSize64    int64
 | 
						||
	EPCSections         []SGXEPCSection
 | 
						||
}
 | 
						||
 | 
						||
func hasSGX(available, lc bool) (rval SGXSupport) {
 | 
						||
	rval.Available = available
 | 
						||
 | 
						||
	if !available {
 | 
						||
		return
 | 
						||
	}
 | 
						||
 | 
						||
	rval.LaunchControl = lc
 | 
						||
 | 
						||
	a, _, _, d := cpuidex(0x12, 0)
 | 
						||
	rval.SGX1Supported = a&0x01 != 0
 | 
						||
	rval.SGX2Supported = a&0x02 != 0
 | 
						||
	rval.MaxEnclaveSizeNot64 = 1 << (d & 0xFF)     // pow 2
 | 
						||
	rval.MaxEnclaveSize64 = 1 << ((d >> 8) & 0xFF) // pow 2
 | 
						||
	rval.EPCSections = make([]SGXEPCSection, 0)
 | 
						||
 | 
						||
	for subleaf := uint32(2); subleaf < 2+8; subleaf++ {
 | 
						||
		eax, ebx, ecx, edx := cpuidex(0x12, subleaf)
 | 
						||
		leafType := eax & 0xf
 | 
						||
 | 
						||
		if leafType == 0 {
 | 
						||
			// Invalid subleaf, stop iterating
 | 
						||
			break
 | 
						||
		} else if leafType == 1 {
 | 
						||
			// EPC Section subleaf
 | 
						||
			baseAddress := uint64(eax&0xfffff000) + (uint64(ebx&0x000fffff) << 32)
 | 
						||
			size := uint64(ecx&0xfffff000) + (uint64(edx&0x000fffff) << 32)
 | 
						||
 | 
						||
			section := SGXEPCSection{BaseAddress: baseAddress, EPCSize: size}
 | 
						||
			rval.EPCSections = append(rval.EPCSections, section)
 | 
						||
		}
 | 
						||
	}
 | 
						||
 | 
						||
	return
 | 
						||
}
 | 
						||
 | 
						||
func support() flagSet {
 | 
						||
	var fs flagSet
 | 
						||
	mfi := maxFunctionID()
 | 
						||
	vend, _ := vendorID()
 | 
						||
	if mfi < 0x1 {
 | 
						||
		return fs
 | 
						||
	}
 | 
						||
	family, model := familyModel()
 | 
						||
 | 
						||
	_, _, c, d := cpuid(1)
 | 
						||
	fs.setIf((d&(1<<15)) != 0, CMOV)
 | 
						||
	fs.setIf((d&(1<<23)) != 0, MMX)
 | 
						||
	fs.setIf((d&(1<<25)) != 0, MMXEXT)
 | 
						||
	fs.setIf((d&(1<<25)) != 0, SSE)
 | 
						||
	fs.setIf((d&(1<<26)) != 0, SSE2)
 | 
						||
	fs.setIf((c&1) != 0, SSE3)
 | 
						||
	fs.setIf((c&(1<<5)) != 0, VMX)
 | 
						||
	fs.setIf((c&0x00000200) != 0, SSSE3)
 | 
						||
	fs.setIf((c&0x00080000) != 0, SSE4)
 | 
						||
	fs.setIf((c&0x00100000) != 0, SSE42)
 | 
						||
	fs.setIf((c&(1<<25)) != 0, AESNI)
 | 
						||
	fs.setIf((c&(1<<1)) != 0, CLMUL)
 | 
						||
	fs.setIf(c&(1<<23) != 0, POPCNT)
 | 
						||
	fs.setIf(c&(1<<30) != 0, RDRAND)
 | 
						||
 | 
						||
	// This bit has been reserved by Intel & AMD for use by hypervisors,
 | 
						||
	// and indicates the presence of a hypervisor.
 | 
						||
	fs.setIf(c&(1<<31) != 0, HYPERVISOR)
 | 
						||
	fs.setIf(c&(1<<29) != 0, F16C)
 | 
						||
	fs.setIf(c&(1<<13) != 0, CX16)
 | 
						||
 | 
						||
	if vend == Intel && (d&(1<<28)) != 0 && mfi >= 4 {
 | 
						||
		fs.setIf(threadsPerCore() > 1, HTT)
 | 
						||
	}
 | 
						||
	if vend == AMD && (d&(1<<28)) != 0 && mfi >= 4 {
 | 
						||
		fs.setIf(threadsPerCore() > 1, HTT)
 | 
						||
	}
 | 
						||
	// Check XGETBV/XSAVE (26), OXSAVE (27) and AVX (28) bits
 | 
						||
	const avxCheck = 1<<26 | 1<<27 | 1<<28
 | 
						||
	if c&avxCheck == avxCheck {
 | 
						||
		// Check for OS support
 | 
						||
		eax, _ := xgetbv(0)
 | 
						||
		if (eax & 0x6) == 0x6 {
 | 
						||
			fs.set(AVX)
 | 
						||
			switch vend {
 | 
						||
			case Intel:
 | 
						||
				// Older than Haswell.
 | 
						||
				fs.setIf(family == 6 && model < 60, AVXSLOW)
 | 
						||
			case AMD:
 | 
						||
				// Older than Zen 2
 | 
						||
				fs.setIf(family < 23 || (family == 23 && model < 49), AVXSLOW)
 | 
						||
			}
 | 
						||
		}
 | 
						||
	}
 | 
						||
	// FMA3 can be used with SSE registers, so no OS support is strictly needed.
 | 
						||
	// fma3 and OSXSAVE needed.
 | 
						||
	const fma3Check = 1<<12 | 1<<27
 | 
						||
	fs.setIf(c&fma3Check == fma3Check, FMA3)
 | 
						||
 | 
						||
	// Check AVX2, AVX2 requires OS support, but BMI1/2 don't.
 | 
						||
	if mfi >= 7 {
 | 
						||
		_, ebx, ecx, edx := cpuidex(7, 0)
 | 
						||
		eax1, _, _, _ := cpuidex(7, 1)
 | 
						||
		if fs.inSet(AVX) && (ebx&0x00000020) != 0 {
 | 
						||
			fs.set(AVX2)
 | 
						||
		}
 | 
						||
		// CPUID.(EAX=7, ECX=0).EBX
 | 
						||
		if (ebx & 0x00000008) != 0 {
 | 
						||
			fs.set(BMI1)
 | 
						||
			fs.setIf((ebx&0x00000100) != 0, BMI2)
 | 
						||
		}
 | 
						||
		fs.setIf(ebx&(1<<2) != 0, SGX)
 | 
						||
		fs.setIf(ebx&(1<<4) != 0, HLE)
 | 
						||
		fs.setIf(ebx&(1<<9) != 0, ERMS)
 | 
						||
		fs.setIf(ebx&(1<<11) != 0, RTM)
 | 
						||
		fs.setIf(ebx&(1<<14) != 0, MPX)
 | 
						||
		fs.setIf(ebx&(1<<18) != 0, RDSEED)
 | 
						||
		fs.setIf(ebx&(1<<19) != 0, ADX)
 | 
						||
		fs.setIf(ebx&(1<<29) != 0, SHA)
 | 
						||
		// CPUID.(EAX=7, ECX=0).ECX
 | 
						||
		fs.setIf(ecx&(1<<5) != 0, WAITPKG)
 | 
						||
		fs.setIf(ecx&(1<<25) != 0, CLDEMOTE)
 | 
						||
		fs.setIf(ecx&(1<<27) != 0, MOVDIRI)
 | 
						||
		fs.setIf(ecx&(1<<28) != 0, MOVDIR64B)
 | 
						||
		fs.setIf(ecx&(1<<29) != 0, ENQCMD)
 | 
						||
		fs.setIf(ecx&(1<<30) != 0, SGXLC)
 | 
						||
		// CPUID.(EAX=7, ECX=0).EDX
 | 
						||
		fs.setIf(edx&(1<<14) != 0, SERIALIZE)
 | 
						||
		fs.setIf(edx&(1<<16) != 0, TSXLDTRK)
 | 
						||
		fs.setIf(edx&(1<<26) != 0, IBPB)
 | 
						||
		fs.setIf(edx&(1<<27) != 0, STIBP)
 | 
						||
 | 
						||
		// Only detect AVX-512 features if XGETBV is supported
 | 
						||
		if c&((1<<26)|(1<<27)) == (1<<26)|(1<<27) {
 | 
						||
			// Check for OS support
 | 
						||
			eax, _ := xgetbv(0)
 | 
						||
 | 
						||
			// Verify that XCR0[7:5] = ‘111b’ (OPMASK state, upper 256-bit of ZMM0-ZMM15 and
 | 
						||
			// ZMM16-ZMM31 state are enabled by OS)
 | 
						||
			/// and that XCR0[2:1] = ‘11b’ (XMM state and YMM state are enabled by OS).
 | 
						||
			if (eax>>5)&7 == 7 && (eax>>1)&3 == 3 {
 | 
						||
				fs.setIf(ebx&(1<<16) != 0, AVX512F)
 | 
						||
				fs.setIf(ebx&(1<<17) != 0, AVX512DQ)
 | 
						||
				fs.setIf(ebx&(1<<21) != 0, AVX512IFMA)
 | 
						||
				fs.setIf(ebx&(1<<26) != 0, AVX512PF)
 | 
						||
				fs.setIf(ebx&(1<<27) != 0, AVX512ER)
 | 
						||
				fs.setIf(ebx&(1<<28) != 0, AVX512CD)
 | 
						||
				fs.setIf(ebx&(1<<30) != 0, AVX512BW)
 | 
						||
				fs.setIf(ebx&(1<<31) != 0, AVX512VL)
 | 
						||
				// ecx
 | 
						||
				fs.setIf(ecx&(1<<1) != 0, AVX512VBMI)
 | 
						||
				fs.setIf(ecx&(1<<6) != 0, AVX512VBMI2)
 | 
						||
				fs.setIf(ecx&(1<<8) != 0, GFNI)
 | 
						||
				fs.setIf(ecx&(1<<9) != 0, VAES)
 | 
						||
				fs.setIf(ecx&(1<<10) != 0, VPCLMULQDQ)
 | 
						||
				fs.setIf(ecx&(1<<11) != 0, AVX512VNNI)
 | 
						||
				fs.setIf(ecx&(1<<12) != 0, AVX512BITALG)
 | 
						||
				fs.setIf(ecx&(1<<14) != 0, AVX512VPOPCNTDQ)
 | 
						||
				// edx
 | 
						||
				fs.setIf(edx&(1<<8) != 0, AVX512VP2INTERSECT)
 | 
						||
				fs.setIf(edx&(1<<22) != 0, AMXBF16)
 | 
						||
				fs.setIf(edx&(1<<24) != 0, AMXTILE)
 | 
						||
				fs.setIf(edx&(1<<25) != 0, AMXINT8)
 | 
						||
				// eax1 = CPUID.(EAX=7, ECX=1).EAX
 | 
						||
				fs.setIf(eax1&(1<<5) != 0, AVX512BF16)
 | 
						||
			}
 | 
						||
		}
 | 
						||
	}
 | 
						||
 | 
						||
	if maxExtendedFunction() >= 0x80000001 {
 | 
						||
		_, _, c, d := cpuid(0x80000001)
 | 
						||
		if (c & (1 << 5)) != 0 {
 | 
						||
			fs.set(LZCNT)
 | 
						||
			fs.set(POPCNT)
 | 
						||
		}
 | 
						||
		fs.setIf((c&(1<<10)) != 0, IBS)
 | 
						||
		fs.setIf((d&(1<<31)) != 0, AMD3DNOW)
 | 
						||
		fs.setIf((d&(1<<30)) != 0, AMD3DNOWEXT)
 | 
						||
		fs.setIf((d&(1<<23)) != 0, MMX)
 | 
						||
		fs.setIf((d&(1<<22)) != 0, MMXEXT)
 | 
						||
		fs.setIf((c&(1<<6)) != 0, SSE4A)
 | 
						||
		fs.setIf(d&(1<<20) != 0, NX)
 | 
						||
		fs.setIf(d&(1<<27) != 0, RDTSCP)
 | 
						||
 | 
						||
		/* XOP and FMA4 use the AVX instruction coding scheme, so they can't be
 | 
						||
		 * used unless the OS has AVX support. */
 | 
						||
		if fs.inSet(AVX) {
 | 
						||
			fs.setIf((c&0x00000800) != 0, XOP)
 | 
						||
			fs.setIf((c&0x00010000) != 0, FMA4)
 | 
						||
		}
 | 
						||
 | 
						||
	}
 | 
						||
	if maxExtendedFunction() >= 0x80000008 {
 | 
						||
		_, b, _, _ := cpuid(0x80000008)
 | 
						||
		fs.setIf((b&(1<<9)) != 0, WBNOINVD)
 | 
						||
	}
 | 
						||
 | 
						||
	if maxExtendedFunction() >= 0x8000001b && fs.inSet(IBS) {
 | 
						||
		eax, _, _, _ := cpuid(0x8000001b)
 | 
						||
		fs.setIf((eax>>0)&1 == 1, IBSFFV)
 | 
						||
		fs.setIf((eax>>1)&1 == 1, IBSFETCHSAM)
 | 
						||
		fs.setIf((eax>>2)&1 == 1, IBSOPSAM)
 | 
						||
		fs.setIf((eax>>3)&1 == 1, IBSRDWROPCNT)
 | 
						||
		fs.setIf((eax>>4)&1 == 1, IBSOPCNT)
 | 
						||
		fs.setIf((eax>>5)&1 == 1, IBSBRNTRGT)
 | 
						||
		fs.setIf((eax>>6)&1 == 1, IBSOPCNTEXT)
 | 
						||
		fs.setIf((eax>>7)&1 == 1, IBSRIPINVALIDCHK)
 | 
						||
	}
 | 
						||
 | 
						||
	return fs
 | 
						||
}
 | 
						||
 | 
						||
func valAsString(values ...uint32) []byte {
 | 
						||
	r := make([]byte, 4*len(values))
 | 
						||
	for i, v := range values {
 | 
						||
		dst := r[i*4:]
 | 
						||
		dst[0] = byte(v & 0xff)
 | 
						||
		dst[1] = byte((v >> 8) & 0xff)
 | 
						||
		dst[2] = byte((v >> 16) & 0xff)
 | 
						||
		dst[3] = byte((v >> 24) & 0xff)
 | 
						||
		switch {
 | 
						||
		case dst[0] == 0:
 | 
						||
			return r[:i*4]
 | 
						||
		case dst[1] == 0:
 | 
						||
			return r[:i*4+1]
 | 
						||
		case dst[2] == 0:
 | 
						||
			return r[:i*4+2]
 | 
						||
		case dst[3] == 0:
 | 
						||
			return r[:i*4+3]
 | 
						||
		}
 | 
						||
	}
 | 
						||
	return r
 | 
						||
}
 |