mirror of
				https://codeberg.org/forgejo/forgejo.git
				synced 2025-10-31 14:31:02 +00:00 
			
		
		
		
	* Switch to keybase go-crypto (for some elliptic curve key) + test
* Use assert.NoError 
and add a little more context to failing test description
* Use assert.(No)Error everywhere 🌈
and assert.Error in place of .Nil/.NotNil
		
	
			
		
			
				
	
	
		
			646 lines
		
	
	
	
		
			19 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			646 lines
		
	
	
	
		
			19 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2009 The Go Authors. All rights reserved.
 | ||
| // Use of this source code is governed by a BSD-style
 | ||
| // license that can be found in the LICENSE file.
 | ||
| 
 | ||
| // Package rsa implements RSA encryption as specified in PKCS#1.
 | ||
| //
 | ||
| // RSA is a single, fundamental operation that is used in this package to
 | ||
| // implement either public-key encryption or public-key signatures.
 | ||
| //
 | ||
| // The original specification for encryption and signatures with RSA is PKCS#1
 | ||
| // and the terms "RSA encryption" and "RSA signatures" by default refer to
 | ||
| // PKCS#1 version 1.5. However, that specification has flaws and new designs
 | ||
| // should use version two, usually called by just OAEP and PSS, where
 | ||
| // possible.
 | ||
| //
 | ||
| // Two sets of interfaces are included in this package. When a more abstract
 | ||
| // interface isn't neccessary, there are functions for encrypting/decrypting
 | ||
| // with v1.5/OAEP and signing/verifying with v1.5/PSS. If one needs to abstract
 | ||
| // over the public-key primitive, the PrivateKey struct implements the
 | ||
| // Decrypter and Signer interfaces from the crypto package.
 | ||
| package rsa
 | ||
| 
 | ||
| import (
 | ||
| 	"crypto"
 | ||
| 	"crypto/rand"
 | ||
| 	"crypto/subtle"
 | ||
| 	"errors"
 | ||
| 	"hash"
 | ||
| 	"io"
 | ||
| 	"math/big"
 | ||
| )
 | ||
| 
 | ||
| var bigZero = big.NewInt(0)
 | ||
| var bigOne = big.NewInt(1)
 | ||
| 
 | ||
| // A PublicKey represents the public part of an RSA key.
 | ||
| type PublicKey struct {
 | ||
| 	N *big.Int // modulus
 | ||
| 	E int64    // public exponent
 | ||
| }
 | ||
| 
 | ||
| // OAEPOptions is an interface for passing options to OAEP decryption using the
 | ||
| // crypto.Decrypter interface.
 | ||
| type OAEPOptions struct {
 | ||
| 	// Hash is the hash function that will be used when generating the mask.
 | ||
| 	Hash crypto.Hash
 | ||
| 	// Label is an arbitrary byte string that must be equal to the value
 | ||
| 	// used when encrypting.
 | ||
| 	Label []byte
 | ||
| }
 | ||
| 
 | ||
| var (
 | ||
| 	errPublicModulus       = errors.New("crypto/rsa: missing public modulus")
 | ||
| 	errPublicExponentSmall = errors.New("crypto/rsa: public exponent too small")
 | ||
| 	errPublicExponentLarge = errors.New("crypto/rsa: public exponent too large")
 | ||
| )
 | ||
| 
 | ||
| // checkPub sanity checks the public key before we use it.
 | ||
| // We require pub.E to fit into a 32-bit integer so that we
 | ||
| // do not have different behavior depending on whether
 | ||
| // int is 32 or 64 bits. See also
 | ||
| // http://www.imperialviolet.org/2012/03/16/rsae.html.
 | ||
| func checkPub(pub *PublicKey) error {
 | ||
| 	if pub.N == nil {
 | ||
| 		return errPublicModulus
 | ||
| 	}
 | ||
| 	if pub.E < 2 {
 | ||
| 		return errPublicExponentSmall
 | ||
| 	}
 | ||
| 	if pub.E > 1<<63-1 {
 | ||
| 		return errPublicExponentLarge
 | ||
| 	}
 | ||
| 	return nil
 | ||
| }
 | ||
| 
 | ||
| // A PrivateKey represents an RSA key
 | ||
| type PrivateKey struct {
 | ||
| 	PublicKey            // public part.
 | ||
| 	D         *big.Int   // private exponent
 | ||
| 	Primes    []*big.Int // prime factors of N, has >= 2 elements.
 | ||
| 
 | ||
| 	// Precomputed contains precomputed values that speed up private
 | ||
| 	// operations, if available.
 | ||
| 	Precomputed PrecomputedValues
 | ||
| }
 | ||
| 
 | ||
| // Public returns the public key corresponding to priv.
 | ||
| func (priv *PrivateKey) Public() crypto.PublicKey {
 | ||
| 	return &priv.PublicKey
 | ||
| }
 | ||
| 
 | ||
| // Sign signs msg with priv, reading randomness from rand. If opts is a
 | ||
| // *PSSOptions then the PSS algorithm will be used, otherwise PKCS#1 v1.5 will
 | ||
| // be used. This method is intended to support keys where the private part is
 | ||
| // kept in, for example, a hardware module. Common uses should use the Sign*
 | ||
| // functions in this package.
 | ||
| func (priv *PrivateKey) Sign(rand io.Reader, msg []byte, opts crypto.SignerOpts) ([]byte, error) {
 | ||
| 	if pssOpts, ok := opts.(*PSSOptions); ok {
 | ||
| 		return SignPSS(rand, priv, pssOpts.Hash, msg, pssOpts)
 | ||
| 	}
 | ||
| 
 | ||
| 	return SignPKCS1v15(rand, priv, opts.HashFunc(), msg)
 | ||
| }
 | ||
| 
 | ||
| // Decrypt decrypts ciphertext with priv. If opts is nil or of type
 | ||
| // *PKCS1v15DecryptOptions then PKCS#1 v1.5 decryption is performed. Otherwise
 | ||
| // opts must have type *OAEPOptions and OAEP decryption is done.
 | ||
| func (priv *PrivateKey) Decrypt(rand io.Reader, ciphertext []byte, opts crypto.DecrypterOpts) (plaintext []byte, err error) {
 | ||
| 	if opts == nil {
 | ||
| 		return DecryptPKCS1v15(rand, priv, ciphertext)
 | ||
| 	}
 | ||
| 
 | ||
| 	switch opts := opts.(type) {
 | ||
| 	case *OAEPOptions:
 | ||
| 		return DecryptOAEP(opts.Hash.New(), rand, priv, ciphertext, opts.Label)
 | ||
| 
 | ||
| 	case *PKCS1v15DecryptOptions:
 | ||
| 		if l := opts.SessionKeyLen; l > 0 {
 | ||
| 			plaintext = make([]byte, l)
 | ||
| 			if _, err := io.ReadFull(rand, plaintext); err != nil {
 | ||
| 				return nil, err
 | ||
| 			}
 | ||
| 			if err := DecryptPKCS1v15SessionKey(rand, priv, ciphertext, plaintext); err != nil {
 | ||
| 				return nil, err
 | ||
| 			}
 | ||
| 			return plaintext, nil
 | ||
| 		} else {
 | ||
| 			return DecryptPKCS1v15(rand, priv, ciphertext)
 | ||
| 		}
 | ||
| 
 | ||
| 	default:
 | ||
| 		return nil, errors.New("crypto/rsa: invalid options for Decrypt")
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| type PrecomputedValues struct {
 | ||
| 	Dp, Dq *big.Int // D mod (P-1) (or mod Q-1)
 | ||
| 	Qinv   *big.Int // Q^-1 mod P
 | ||
| 
 | ||
| 	// CRTValues is used for the 3rd and subsequent primes. Due to a
 | ||
| 	// historical accident, the CRT for the first two primes is handled
 | ||
| 	// differently in PKCS#1 and interoperability is sufficiently
 | ||
| 	// important that we mirror this.
 | ||
| 	CRTValues []CRTValue
 | ||
| }
 | ||
| 
 | ||
| // CRTValue contains the precomputed Chinese remainder theorem values.
 | ||
| type CRTValue struct {
 | ||
| 	Exp   *big.Int // D mod (prime-1).
 | ||
| 	Coeff *big.Int // R·Coeff ≡ 1 mod Prime.
 | ||
| 	R     *big.Int // product of primes prior to this (inc p and q).
 | ||
| }
 | ||
| 
 | ||
| // Validate performs basic sanity checks on the key.
 | ||
| // It returns nil if the key is valid, or else an error describing a problem.
 | ||
| func (priv *PrivateKey) Validate() error {
 | ||
| 	if err := checkPub(&priv.PublicKey); err != nil {
 | ||
| 		return err
 | ||
| 	}
 | ||
| 
 | ||
| 	// Check that Πprimes == n.
 | ||
| 	modulus := new(big.Int).Set(bigOne)
 | ||
| 	for _, prime := range priv.Primes {
 | ||
| 		// Any primes ≤ 1 will cause divide-by-zero panics later.
 | ||
| 		if prime.Cmp(bigOne) <= 0 {
 | ||
| 			return errors.New("crypto/rsa: invalid prime value")
 | ||
| 		}
 | ||
| 		modulus.Mul(modulus, prime)
 | ||
| 	}
 | ||
| 	if modulus.Cmp(priv.N) != 0 {
 | ||
| 		return errors.New("crypto/rsa: invalid modulus")
 | ||
| 	}
 | ||
| 
 | ||
| 	// Check that de ≡ 1 mod p-1, for each prime.
 | ||
| 	// This implies that e is coprime to each p-1 as e has a multiplicative
 | ||
| 	// inverse. Therefore e is coprime to lcm(p-1,q-1,r-1,...) =
 | ||
| 	// exponent(ℤ/nℤ). It also implies that a^de ≡ a mod p as a^(p-1) ≡ 1
 | ||
| 	// mod p. Thus a^de ≡ a mod n for all a coprime to n, as required.
 | ||
| 	congruence := new(big.Int)
 | ||
| 	de := new(big.Int).SetInt64(int64(priv.E))
 | ||
| 	de.Mul(de, priv.D)
 | ||
| 	for _, prime := range priv.Primes {
 | ||
| 		pminus1 := new(big.Int).Sub(prime, bigOne)
 | ||
| 		congruence.Mod(de, pminus1)
 | ||
| 		if congruence.Cmp(bigOne) != 0 {
 | ||
| 			return errors.New("crypto/rsa: invalid exponents")
 | ||
| 		}
 | ||
| 	}
 | ||
| 	return nil
 | ||
| }
 | ||
| 
 | ||
| // GenerateKey generates an RSA keypair of the given bit size using the
 | ||
| // random source random (for example, crypto/rand.Reader).
 | ||
| func GenerateKey(random io.Reader, bits int) (priv *PrivateKey, err error) {
 | ||
| 	return GenerateMultiPrimeKey(random, 2, bits)
 | ||
| }
 | ||
| 
 | ||
| // GenerateMultiPrimeKey generates a multi-prime RSA keypair of the given bit
 | ||
| // size and the given random source, as suggested in [1]. Although the public
 | ||
| // keys are compatible (actually, indistinguishable) from the 2-prime case,
 | ||
| // the private keys are not. Thus it may not be possible to export multi-prime
 | ||
| // private keys in certain formats or to subsequently import them into other
 | ||
| // code.
 | ||
| //
 | ||
| // Table 1 in [2] suggests maximum numbers of primes for a given size.
 | ||
| //
 | ||
| // [1] US patent 4405829 (1972, expired)
 | ||
| // [2] http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf
 | ||
| func GenerateMultiPrimeKey(random io.Reader, nprimes int, bits int) (priv *PrivateKey, err error) {
 | ||
| 	priv = new(PrivateKey)
 | ||
| 	priv.E = 65537
 | ||
| 
 | ||
| 	if nprimes < 2 {
 | ||
| 		return nil, errors.New("crypto/rsa: GenerateMultiPrimeKey: nprimes must be >= 2")
 | ||
| 	}
 | ||
| 
 | ||
| 	primes := make([]*big.Int, nprimes)
 | ||
| 
 | ||
| NextSetOfPrimes:
 | ||
| 	for {
 | ||
| 		todo := bits
 | ||
| 		// crypto/rand should set the top two bits in each prime.
 | ||
| 		// Thus each prime has the form
 | ||
| 		//   p_i = 2^bitlen(p_i) × 0.11... (in base 2).
 | ||
| 		// And the product is:
 | ||
| 		//   P = 2^todo × α
 | ||
| 		// where α is the product of nprimes numbers of the form 0.11...
 | ||
| 		//
 | ||
| 		// If α < 1/2 (which can happen for nprimes > 2), we need to
 | ||
| 		// shift todo to compensate for lost bits: the mean value of 0.11...
 | ||
| 		// is 7/8, so todo + shift - nprimes * log2(7/8) ~= bits - 1/2
 | ||
| 		// will give good results.
 | ||
| 		if nprimes >= 7 {
 | ||
| 			todo += (nprimes - 2) / 5
 | ||
| 		}
 | ||
| 		for i := 0; i < nprimes; i++ {
 | ||
| 			primes[i], err = rand.Prime(random, todo/(nprimes-i))
 | ||
| 			if err != nil {
 | ||
| 				return nil, err
 | ||
| 			}
 | ||
| 			todo -= primes[i].BitLen()
 | ||
| 		}
 | ||
| 
 | ||
| 		// Make sure that primes is pairwise unequal.
 | ||
| 		for i, prime := range primes {
 | ||
| 			for j := 0; j < i; j++ {
 | ||
| 				if prime.Cmp(primes[j]) == 0 {
 | ||
| 					continue NextSetOfPrimes
 | ||
| 				}
 | ||
| 			}
 | ||
| 		}
 | ||
| 
 | ||
| 		n := new(big.Int).Set(bigOne)
 | ||
| 		totient := new(big.Int).Set(bigOne)
 | ||
| 		pminus1 := new(big.Int)
 | ||
| 		for _, prime := range primes {
 | ||
| 			n.Mul(n, prime)
 | ||
| 			pminus1.Sub(prime, bigOne)
 | ||
| 			totient.Mul(totient, pminus1)
 | ||
| 		}
 | ||
| 		if n.BitLen() != bits {
 | ||
| 			// This should never happen for nprimes == 2 because
 | ||
| 			// crypto/rand should set the top two bits in each prime.
 | ||
| 			// For nprimes > 2 we hope it does not happen often.
 | ||
| 			continue NextSetOfPrimes
 | ||
| 		}
 | ||
| 
 | ||
| 		g := new(big.Int)
 | ||
| 		priv.D = new(big.Int)
 | ||
| 		y := new(big.Int)
 | ||
| 		e := big.NewInt(int64(priv.E))
 | ||
| 		g.GCD(priv.D, y, e, totient)
 | ||
| 
 | ||
| 		if g.Cmp(bigOne) == 0 {
 | ||
| 			if priv.D.Sign() < 0 {
 | ||
| 				priv.D.Add(priv.D, totient)
 | ||
| 			}
 | ||
| 			priv.Primes = primes
 | ||
| 			priv.N = n
 | ||
| 
 | ||
| 			break
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	priv.Precompute()
 | ||
| 	return
 | ||
| }
 | ||
| 
 | ||
| // incCounter increments a four byte, big-endian counter.
 | ||
| func incCounter(c *[4]byte) {
 | ||
| 	if c[3]++; c[3] != 0 {
 | ||
| 		return
 | ||
| 	}
 | ||
| 	if c[2]++; c[2] != 0 {
 | ||
| 		return
 | ||
| 	}
 | ||
| 	if c[1]++; c[1] != 0 {
 | ||
| 		return
 | ||
| 	}
 | ||
| 	c[0]++
 | ||
| }
 | ||
| 
 | ||
| // mgf1XOR XORs the bytes in out with a mask generated using the MGF1 function
 | ||
| // specified in PKCS#1 v2.1.
 | ||
| func mgf1XOR(out []byte, hash hash.Hash, seed []byte) {
 | ||
| 	var counter [4]byte
 | ||
| 	var digest []byte
 | ||
| 
 | ||
| 	done := 0
 | ||
| 	for done < len(out) {
 | ||
| 		hash.Write(seed)
 | ||
| 		hash.Write(counter[0:4])
 | ||
| 		digest = hash.Sum(digest[:0])
 | ||
| 		hash.Reset()
 | ||
| 
 | ||
| 		for i := 0; i < len(digest) && done < len(out); i++ {
 | ||
| 			out[done] ^= digest[i]
 | ||
| 			done++
 | ||
| 		}
 | ||
| 		incCounter(&counter)
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| // ErrMessageTooLong is returned when attempting to encrypt a message which is
 | ||
| // too large for the size of the public key.
 | ||
| var ErrMessageTooLong = errors.New("crypto/rsa: message too long for RSA public key size")
 | ||
| 
 | ||
| func encrypt(c *big.Int, pub *PublicKey, m *big.Int) *big.Int {
 | ||
| 	e := big.NewInt(int64(pub.E))
 | ||
| 	c.Exp(m, e, pub.N)
 | ||
| 	return c
 | ||
| }
 | ||
| 
 | ||
| // EncryptOAEP encrypts the given message with RSA-OAEP.
 | ||
| //
 | ||
| // OAEP is parameterised by a hash function that is used as a random oracle.
 | ||
| // Encryption and decryption of a given message must use the same hash function
 | ||
| // and sha256.New() is a reasonable choice.
 | ||
| //
 | ||
| // The random parameter is used as a source of entropy to ensure that
 | ||
| // encrypting the same message twice doesn't result in the same ciphertext.
 | ||
| //
 | ||
| // The label parameter may contain arbitrary data that will not be encrypted,
 | ||
| // but which gives important context to the message. For example, if a given
 | ||
| // public key is used to decrypt two types of messages then distinct label
 | ||
| // values could be used to ensure that a ciphertext for one purpose cannot be
 | ||
| // used for another by an attacker. If not required it can be empty.
 | ||
| //
 | ||
| // The message must be no longer than the length of the public modulus less
 | ||
| // twice the hash length plus 2.
 | ||
| func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg []byte, label []byte) (out []byte, err error) {
 | ||
| 	if err := checkPub(pub); err != nil {
 | ||
| 		return nil, err
 | ||
| 	}
 | ||
| 	hash.Reset()
 | ||
| 	k := (pub.N.BitLen() + 7) / 8
 | ||
| 	if len(msg) > k-2*hash.Size()-2 {
 | ||
| 		err = ErrMessageTooLong
 | ||
| 		return
 | ||
| 	}
 | ||
| 
 | ||
| 	hash.Write(label)
 | ||
| 	lHash := hash.Sum(nil)
 | ||
| 	hash.Reset()
 | ||
| 
 | ||
| 	em := make([]byte, k)
 | ||
| 	seed := em[1 : 1+hash.Size()]
 | ||
| 	db := em[1+hash.Size():]
 | ||
| 
 | ||
| 	copy(db[0:hash.Size()], lHash)
 | ||
| 	db[len(db)-len(msg)-1] = 1
 | ||
| 	copy(db[len(db)-len(msg):], msg)
 | ||
| 
 | ||
| 	_, err = io.ReadFull(random, seed)
 | ||
| 	if err != nil {
 | ||
| 		return
 | ||
| 	}
 | ||
| 
 | ||
| 	mgf1XOR(db, hash, seed)
 | ||
| 	mgf1XOR(seed, hash, db)
 | ||
| 
 | ||
| 	m := new(big.Int)
 | ||
| 	m.SetBytes(em)
 | ||
| 	c := encrypt(new(big.Int), pub, m)
 | ||
| 	out = c.Bytes()
 | ||
| 
 | ||
| 	if len(out) < k {
 | ||
| 		// If the output is too small, we need to left-pad with zeros.
 | ||
| 		t := make([]byte, k)
 | ||
| 		copy(t[k-len(out):], out)
 | ||
| 		out = t
 | ||
| 	}
 | ||
| 
 | ||
| 	return
 | ||
| }
 | ||
| 
 | ||
| // ErrDecryption represents a failure to decrypt a message.
 | ||
| // It is deliberately vague to avoid adaptive attacks.
 | ||
| var ErrDecryption = errors.New("crypto/rsa: decryption error")
 | ||
| 
 | ||
| // ErrVerification represents a failure to verify a signature.
 | ||
| // It is deliberately vague to avoid adaptive attacks.
 | ||
| var ErrVerification = errors.New("crypto/rsa: verification error")
 | ||
| 
 | ||
| // modInverse returns ia, the inverse of a in the multiplicative group of prime
 | ||
| // order n. It requires that a be a member of the group (i.e. less than n).
 | ||
| func modInverse(a, n *big.Int) (ia *big.Int, ok bool) {
 | ||
| 	g := new(big.Int)
 | ||
| 	x := new(big.Int)
 | ||
| 	y := new(big.Int)
 | ||
| 	g.GCD(x, y, a, n)
 | ||
| 	if g.Cmp(bigOne) != 0 {
 | ||
| 		// In this case, a and n aren't coprime and we cannot calculate
 | ||
| 		// the inverse. This happens because the values of n are nearly
 | ||
| 		// prime (being the product of two primes) rather than truly
 | ||
| 		// prime.
 | ||
| 		return
 | ||
| 	}
 | ||
| 
 | ||
| 	if x.Cmp(bigOne) < 0 {
 | ||
| 		// 0 is not the multiplicative inverse of any element so, if x
 | ||
| 		// < 1, then x is negative.
 | ||
| 		x.Add(x, n)
 | ||
| 	}
 | ||
| 
 | ||
| 	return x, true
 | ||
| }
 | ||
| 
 | ||
| // Precompute performs some calculations that speed up private key operations
 | ||
| // in the future.
 | ||
| func (priv *PrivateKey) Precompute() {
 | ||
| 	if priv.Precomputed.Dp != nil {
 | ||
| 		return
 | ||
| 	}
 | ||
| 
 | ||
| 	priv.Precomputed.Dp = new(big.Int).Sub(priv.Primes[0], bigOne)
 | ||
| 	priv.Precomputed.Dp.Mod(priv.D, priv.Precomputed.Dp)
 | ||
| 
 | ||
| 	priv.Precomputed.Dq = new(big.Int).Sub(priv.Primes[1], bigOne)
 | ||
| 	priv.Precomputed.Dq.Mod(priv.D, priv.Precomputed.Dq)
 | ||
| 
 | ||
| 	priv.Precomputed.Qinv = new(big.Int).ModInverse(priv.Primes[1], priv.Primes[0])
 | ||
| 
 | ||
| 	r := new(big.Int).Mul(priv.Primes[0], priv.Primes[1])
 | ||
| 	priv.Precomputed.CRTValues = make([]CRTValue, len(priv.Primes)-2)
 | ||
| 	for i := 2; i < len(priv.Primes); i++ {
 | ||
| 		prime := priv.Primes[i]
 | ||
| 		values := &priv.Precomputed.CRTValues[i-2]
 | ||
| 
 | ||
| 		values.Exp = new(big.Int).Sub(prime, bigOne)
 | ||
| 		values.Exp.Mod(priv.D, values.Exp)
 | ||
| 
 | ||
| 		values.R = new(big.Int).Set(r)
 | ||
| 		values.Coeff = new(big.Int).ModInverse(r, prime)
 | ||
| 
 | ||
| 		r.Mul(r, prime)
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| // decrypt performs an RSA decryption, resulting in a plaintext integer. If a
 | ||
| // random source is given, RSA blinding is used.
 | ||
| func decrypt(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) {
 | ||
| 	// TODO(agl): can we get away with reusing blinds?
 | ||
| 	if c.Cmp(priv.N) > 0 {
 | ||
| 		err = ErrDecryption
 | ||
| 		return
 | ||
| 	}
 | ||
| 
 | ||
| 	var ir *big.Int
 | ||
| 	if random != nil {
 | ||
| 		// Blinding enabled. Blinding involves multiplying c by r^e.
 | ||
| 		// Then the decryption operation performs (m^e * r^e)^d mod n
 | ||
| 		// which equals mr mod n. The factor of r can then be removed
 | ||
| 		// by multiplying by the multiplicative inverse of r.
 | ||
| 
 | ||
| 		var r *big.Int
 | ||
| 
 | ||
| 		for {
 | ||
| 			r, err = rand.Int(random, priv.N)
 | ||
| 			if err != nil {
 | ||
| 				return
 | ||
| 			}
 | ||
| 			if r.Cmp(bigZero) == 0 {
 | ||
| 				r = bigOne
 | ||
| 			}
 | ||
| 			var ok bool
 | ||
| 			ir, ok = modInverse(r, priv.N)
 | ||
| 			if ok {
 | ||
| 				break
 | ||
| 			}
 | ||
| 		}
 | ||
| 		bigE := big.NewInt(int64(priv.E))
 | ||
| 		rpowe := new(big.Int).Exp(r, bigE, priv.N)
 | ||
| 		cCopy := new(big.Int).Set(c)
 | ||
| 		cCopy.Mul(cCopy, rpowe)
 | ||
| 		cCopy.Mod(cCopy, priv.N)
 | ||
| 		c = cCopy
 | ||
| 	}
 | ||
| 
 | ||
| 	if priv.Precomputed.Dp == nil {
 | ||
| 		m = new(big.Int).Exp(c, priv.D, priv.N)
 | ||
| 	} else {
 | ||
| 		// We have the precalculated values needed for the CRT.
 | ||
| 		m = new(big.Int).Exp(c, priv.Precomputed.Dp, priv.Primes[0])
 | ||
| 		m2 := new(big.Int).Exp(c, priv.Precomputed.Dq, priv.Primes[1])
 | ||
| 		m.Sub(m, m2)
 | ||
| 		if m.Sign() < 0 {
 | ||
| 			m.Add(m, priv.Primes[0])
 | ||
| 		}
 | ||
| 		m.Mul(m, priv.Precomputed.Qinv)
 | ||
| 		m.Mod(m, priv.Primes[0])
 | ||
| 		m.Mul(m, priv.Primes[1])
 | ||
| 		m.Add(m, m2)
 | ||
| 
 | ||
| 		for i, values := range priv.Precomputed.CRTValues {
 | ||
| 			prime := priv.Primes[2+i]
 | ||
| 			m2.Exp(c, values.Exp, prime)
 | ||
| 			m2.Sub(m2, m)
 | ||
| 			m2.Mul(m2, values.Coeff)
 | ||
| 			m2.Mod(m2, prime)
 | ||
| 			if m2.Sign() < 0 {
 | ||
| 				m2.Add(m2, prime)
 | ||
| 			}
 | ||
| 			m2.Mul(m2, values.R)
 | ||
| 			m.Add(m, m2)
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	if ir != nil {
 | ||
| 		// Unblind.
 | ||
| 		m.Mul(m, ir)
 | ||
| 		m.Mod(m, priv.N)
 | ||
| 	}
 | ||
| 
 | ||
| 	return
 | ||
| }
 | ||
| 
 | ||
| func decryptAndCheck(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) {
 | ||
| 	m, err = decrypt(random, priv, c)
 | ||
| 	if err != nil {
 | ||
| 		return nil, err
 | ||
| 	}
 | ||
| 
 | ||
| 	// In order to defend against errors in the CRT computation, m^e is
 | ||
| 	// calculated, which should match the original ciphertext.
 | ||
| 	check := encrypt(new(big.Int), &priv.PublicKey, m)
 | ||
| 	if c.Cmp(check) != 0 {
 | ||
| 		return nil, errors.New("rsa: internal error")
 | ||
| 	}
 | ||
| 	return m, nil
 | ||
| }
 | ||
| 
 | ||
| // DecryptOAEP decrypts ciphertext using RSA-OAEP.
 | ||
| 
 | ||
| // OAEP is parameterised by a hash function that is used as a random oracle.
 | ||
| // Encryption and decryption of a given message must use the same hash function
 | ||
| // and sha256.New() is a reasonable choice.
 | ||
| //
 | ||
| // The random parameter, if not nil, is used to blind the private-key operation
 | ||
| // and avoid timing side-channel attacks. Blinding is purely internal to this
 | ||
| // function – the random data need not match that used when encrypting.
 | ||
| //
 | ||
| // The label parameter must match the value given when encrypting. See
 | ||
| // EncryptOAEP for details.
 | ||
| func DecryptOAEP(hash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) (msg []byte, err error) {
 | ||
| 	if err := checkPub(&priv.PublicKey); err != nil {
 | ||
| 		return nil, err
 | ||
| 	}
 | ||
| 	k := (priv.N.BitLen() + 7) / 8
 | ||
| 	if len(ciphertext) > k ||
 | ||
| 		k < hash.Size()*2+2 {
 | ||
| 		err = ErrDecryption
 | ||
| 		return
 | ||
| 	}
 | ||
| 
 | ||
| 	c := new(big.Int).SetBytes(ciphertext)
 | ||
| 
 | ||
| 	m, err := decrypt(random, priv, c)
 | ||
| 	if err != nil {
 | ||
| 		return
 | ||
| 	}
 | ||
| 
 | ||
| 	hash.Write(label)
 | ||
| 	lHash := hash.Sum(nil)
 | ||
| 	hash.Reset()
 | ||
| 
 | ||
| 	// Converting the plaintext number to bytes will strip any
 | ||
| 	// leading zeros so we may have to left pad. We do this unconditionally
 | ||
| 	// to avoid leaking timing information. (Although we still probably
 | ||
| 	// leak the number of leading zeros. It's not clear that we can do
 | ||
| 	// anything about this.)
 | ||
| 	em := leftPad(m.Bytes(), k)
 | ||
| 
 | ||
| 	firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0)
 | ||
| 
 | ||
| 	seed := em[1 : hash.Size()+1]
 | ||
| 	db := em[hash.Size()+1:]
 | ||
| 
 | ||
| 	mgf1XOR(seed, hash, db)
 | ||
| 	mgf1XOR(db, hash, seed)
 | ||
| 
 | ||
| 	lHash2 := db[0:hash.Size()]
 | ||
| 
 | ||
| 	// We have to validate the plaintext in constant time in order to avoid
 | ||
| 	// attacks like: J. Manger. A Chosen Ciphertext Attack on RSA Optimal
 | ||
| 	// Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1
 | ||
| 	// v2.0. In J. Kilian, editor, Advances in Cryptology.
 | ||
| 	lHash2Good := subtle.ConstantTimeCompare(lHash, lHash2)
 | ||
| 
 | ||
| 	// The remainder of the plaintext must be zero or more 0x00, followed
 | ||
| 	// by 0x01, followed by the message.
 | ||
| 	//   lookingForIndex: 1 iff we are still looking for the 0x01
 | ||
| 	//   index: the offset of the first 0x01 byte
 | ||
| 	//   invalid: 1 iff we saw a non-zero byte before the 0x01.
 | ||
| 	var lookingForIndex, index, invalid int
 | ||
| 	lookingForIndex = 1
 | ||
| 	rest := db[hash.Size():]
 | ||
| 
 | ||
| 	for i := 0; i < len(rest); i++ {
 | ||
| 		equals0 := subtle.ConstantTimeByteEq(rest[i], 0)
 | ||
| 		equals1 := subtle.ConstantTimeByteEq(rest[i], 1)
 | ||
| 		index = subtle.ConstantTimeSelect(lookingForIndex&equals1, i, index)
 | ||
| 		lookingForIndex = subtle.ConstantTimeSelect(equals1, 0, lookingForIndex)
 | ||
| 		invalid = subtle.ConstantTimeSelect(lookingForIndex&^equals0, 1, invalid)
 | ||
| 	}
 | ||
| 
 | ||
| 	if firstByteIsZero&lHash2Good&^invalid&^lookingForIndex != 1 {
 | ||
| 		err = ErrDecryption
 | ||
| 		return
 | ||
| 	}
 | ||
| 
 | ||
| 	msg = rest[index+1:]
 | ||
| 	return
 | ||
| }
 | ||
| 
 | ||
| // leftPad returns a new slice of length size. The contents of input are right
 | ||
| // aligned in the new slice.
 | ||
| func leftPad(input []byte, size int) (out []byte) {
 | ||
| 	n := len(input)
 | ||
| 	if n > size {
 | ||
| 		n = size
 | ||
| 	}
 | ||
| 	out = make([]byte, size)
 | ||
| 	copy(out[len(out)-n:], input)
 | ||
| 	return
 | ||
| }
 |