mirror of
				https://codeberg.org/forgejo/forgejo.git
				synced 2025-11-02 23:41:05 +00:00 
			
		
		
		
	* Improve issue indexer * Fix new issue sqlite bug * Different test indexer paths for each db * Add integration indexer paths to make clean
		
			
				
	
	
		
			212 lines
		
	
	
	
		
			7.3 KiB
		
	
	
	
		
			Go
		
	
	
	
		
			Vendored
		
	
	
	
			
		
		
	
	
			212 lines
		
	
	
	
		
			7.3 KiB
		
	
	
	
		
			Go
		
	
	
	
		
			Vendored
		
	
	
	
//  Copyright (c) 2017 Couchbase, Inc.
 | 
						|
//
 | 
						|
// Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
// you may not use this file except in compliance with the License.
 | 
						|
// You may obtain a copy of the License at
 | 
						|
//
 | 
						|
// 		http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
//
 | 
						|
// Unless required by applicable law or agreed to in writing, software
 | 
						|
// distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
// See the License for the specific language governing permissions and
 | 
						|
// limitations under the License.
 | 
						|
 | 
						|
package geo
 | 
						|
 | 
						|
import (
 | 
						|
	"math"
 | 
						|
)
 | 
						|
 | 
						|
var earthDiameterPerLatitude []float64
 | 
						|
var sinTab []float64
 | 
						|
var cosTab []float64
 | 
						|
var asinTab []float64
 | 
						|
var asinDer1DivF1Tab []float64
 | 
						|
var asinDer2DivF2Tab []float64
 | 
						|
var asinDer3DivF3Tab []float64
 | 
						|
var asinDer4DivF4Tab []float64
 | 
						|
 | 
						|
const radiusTabsSize = (1 << 10) + 1
 | 
						|
const radiusDelta = (math.Pi / 2) / (radiusTabsSize - 1)
 | 
						|
const radiusIndexer = 1 / radiusDelta
 | 
						|
const sinCosTabsSize = (1 << 11) + 1
 | 
						|
const asinTabsSize = (1 << 13) + 1
 | 
						|
const oneDivF2 = 1 / 2.0
 | 
						|
const oneDivF3 = 1 / 6.0
 | 
						|
const oneDivF4 = 1 / 24.0
 | 
						|
 | 
						|
// 1.57079632673412561417e+00 first 33 bits of pi/2
 | 
						|
var pio2Hi = math.Float64frombits(0x3FF921FB54400000)
 | 
						|
 | 
						|
// 6.07710050650619224932e-11 pi/2 - PIO2_HI
 | 
						|
var pio2Lo = math.Float64frombits(0x3DD0B4611A626331)
 | 
						|
 | 
						|
var asinPio2Hi = math.Float64frombits(0x3FF921FB54442D18) // 1.57079632679489655800e+00
 | 
						|
var asinPio2Lo = math.Float64frombits(0x3C91A62633145C07) // 6.12323399573676603587e-17
 | 
						|
var asinPs0 = math.Float64frombits(0x3fc5555555555555)    //  1.66666666666666657415e-01
 | 
						|
var asinPs1 = math.Float64frombits(0xbfd4d61203eb6f7d)    // -3.25565818622400915405e-01
 | 
						|
var asinPs2 = math.Float64frombits(0x3fc9c1550e884455)    //  2.01212532134862925881e-01
 | 
						|
var asinPs3 = math.Float64frombits(0xbfa48228b5688f3b)    // -4.00555345006794114027e-02
 | 
						|
var asinPs4 = math.Float64frombits(0x3f49efe07501b288)    //  7.91534994289814532176e-04
 | 
						|
var asinPs5 = math.Float64frombits(0x3f023de10dfdf709)    //  3.47933107596021167570e-05
 | 
						|
var asinQs1 = math.Float64frombits(0xc0033a271c8a2d4b)    // -2.40339491173441421878e+00
 | 
						|
var asinQs2 = math.Float64frombits(0x40002ae59c598ac8)    //  2.02094576023350569471e+00
 | 
						|
var asinQs3 = math.Float64frombits(0xbfe6066c1b8d0159)    // -6.88283971605453293030e-01
 | 
						|
var asinQs4 = math.Float64frombits(0x3fb3b8c5b12e9282)    //  7.70381505559019352791e-02
 | 
						|
 | 
						|
var twoPiHi = 4 * pio2Hi
 | 
						|
var twoPiLo = 4 * pio2Lo
 | 
						|
var sinCosDeltaHi = twoPiHi/sinCosTabsSize - 1
 | 
						|
var sinCosDeltaLo = twoPiLo/sinCosTabsSize - 1
 | 
						|
var sinCosIndexer = 1 / (sinCosDeltaHi + sinCosDeltaLo)
 | 
						|
var sinCosMaxValueForIntModulo = ((math.MaxInt64 >> 9) / sinCosIndexer) * 0.99
 | 
						|
var asinMaxValueForTabs = math.Sin(73.0 * degreesToRadian)
 | 
						|
 | 
						|
var asinDelta = asinMaxValueForTabs / (asinTabsSize - 1)
 | 
						|
var asinIndexer = 1 / asinDelta
 | 
						|
 | 
						|
func init() {
 | 
						|
	// initializes the tables used for the sloppy math functions
 | 
						|
 | 
						|
	// sin and cos
 | 
						|
	sinTab = make([]float64, sinCosTabsSize)
 | 
						|
	cosTab = make([]float64, sinCosTabsSize)
 | 
						|
	sinCosPiIndex := (sinCosTabsSize - 1) / 2
 | 
						|
	sinCosPiMul2Index := 2 * sinCosPiIndex
 | 
						|
	sinCosPiMul05Index := sinCosPiIndex / 2
 | 
						|
	sinCosPiMul15Index := 3 * sinCosPiIndex / 2
 | 
						|
	for i := 0; i < sinCosTabsSize; i++ {
 | 
						|
		// angle: in [0,2*PI].
 | 
						|
		angle := float64(i)*sinCosDeltaHi + float64(i)*sinCosDeltaLo
 | 
						|
		sinAngle := math.Sin(angle)
 | 
						|
		cosAngle := math.Cos(angle)
 | 
						|
		// For indexes corresponding to null cosine or sine, we make sure the value is zero
 | 
						|
		// and not an epsilon. This allows for a much better accuracy for results close to zero.
 | 
						|
		if i == sinCosPiIndex {
 | 
						|
			sinAngle = 0.0
 | 
						|
		} else if i == sinCosPiMul2Index {
 | 
						|
			sinAngle = 0.0
 | 
						|
		} else if i == sinCosPiMul05Index {
 | 
						|
			sinAngle = 0.0
 | 
						|
		} else if i == sinCosPiMul15Index {
 | 
						|
			sinAngle = 0.0
 | 
						|
		}
 | 
						|
		sinTab[i] = sinAngle
 | 
						|
		cosTab[i] = cosAngle
 | 
						|
	}
 | 
						|
 | 
						|
	// asin
 | 
						|
	asinTab = make([]float64, asinTabsSize)
 | 
						|
	asinDer1DivF1Tab = make([]float64, asinTabsSize)
 | 
						|
	asinDer2DivF2Tab = make([]float64, asinTabsSize)
 | 
						|
	asinDer3DivF3Tab = make([]float64, asinTabsSize)
 | 
						|
	asinDer4DivF4Tab = make([]float64, asinTabsSize)
 | 
						|
	for i := 0; i < asinTabsSize; i++ {
 | 
						|
		// x: in [0,ASIN_MAX_VALUE_FOR_TABS].
 | 
						|
		x := float64(i) * asinDelta
 | 
						|
		asinTab[i] = math.Asin(x)
 | 
						|
		oneMinusXSqInv := 1.0 / (1 - x*x)
 | 
						|
		oneMinusXSqInv05 := math.Sqrt(oneMinusXSqInv)
 | 
						|
		oneMinusXSqInv15 := oneMinusXSqInv05 * oneMinusXSqInv
 | 
						|
		oneMinusXSqInv25 := oneMinusXSqInv15 * oneMinusXSqInv
 | 
						|
		oneMinusXSqInv35 := oneMinusXSqInv25 * oneMinusXSqInv
 | 
						|
		asinDer1DivF1Tab[i] = oneMinusXSqInv05
 | 
						|
		asinDer2DivF2Tab[i] = (x * oneMinusXSqInv15) * oneDivF2
 | 
						|
		asinDer3DivF3Tab[i] = ((1 + 2*x*x) * oneMinusXSqInv25) * oneDivF3
 | 
						|
		asinDer4DivF4Tab[i] = ((5 + 2*x*(2+x*(5-2*x))) * oneMinusXSqInv35) * oneDivF4
 | 
						|
	}
 | 
						|
 | 
						|
	// earth radius
 | 
						|
	a := 6378137.0
 | 
						|
	b := 6356752.31420
 | 
						|
	a2 := a * a
 | 
						|
	b2 := b * b
 | 
						|
	earthDiameterPerLatitude = make([]float64, radiusTabsSize)
 | 
						|
	earthDiameterPerLatitude[0] = 2.0 * a / 1000
 | 
						|
	earthDiameterPerLatitude[radiusTabsSize-1] = 2.0 * b / 1000
 | 
						|
	for i := 1; i < radiusTabsSize-1; i++ {
 | 
						|
		lat := math.Pi * float64(i) / (2*radiusTabsSize - 1)
 | 
						|
		one := math.Pow(a2*math.Cos(lat), 2)
 | 
						|
		two := math.Pow(b2*math.Sin(lat), 2)
 | 
						|
		three := math.Pow(float64(a)*math.Cos(lat), 2)
 | 
						|
		four := math.Pow(b*math.Sin(lat), 2)
 | 
						|
		radius := math.Sqrt((one + two) / (three + four))
 | 
						|
		earthDiameterPerLatitude[i] = 2 * radius / 1000
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// earthDiameter returns an estimation of the earth's diameter at the specified
 | 
						|
// latitude in kilometers
 | 
						|
func earthDiameter(lat float64) float64 {
 | 
						|
	index := math.Mod(math.Abs(lat)*radiusIndexer+0.5, float64(len(earthDiameterPerLatitude)))
 | 
						|
	if math.IsNaN(index) {
 | 
						|
		return 0
 | 
						|
	}
 | 
						|
	return earthDiameterPerLatitude[int(index)]
 | 
						|
}
 | 
						|
 | 
						|
var pio2 = math.Pi / 2
 | 
						|
 | 
						|
func sin(a float64) float64 {
 | 
						|
	return cos(a - pio2)
 | 
						|
}
 | 
						|
 | 
						|
// cos is a sloppy math (faster) implementation of math.Cos
 | 
						|
func cos(a float64) float64 {
 | 
						|
	if a < 0.0 {
 | 
						|
		a = -a
 | 
						|
	}
 | 
						|
	if a > sinCosMaxValueForIntModulo {
 | 
						|
		return math.Cos(a)
 | 
						|
	}
 | 
						|
	// index: possibly outside tables range.
 | 
						|
	index := int(a*sinCosIndexer + 0.5)
 | 
						|
	delta := (a - float64(index)*sinCosDeltaHi) - float64(index)*sinCosDeltaLo
 | 
						|
	// Making sure index is within tables range.
 | 
						|
	// Last value of each table is the same than first, so we ignore it (tabs size minus one) for modulo.
 | 
						|
	index &= (sinCosTabsSize - 2) // index % (SIN_COS_TABS_SIZE-1)
 | 
						|
	indexCos := cosTab[index]
 | 
						|
	indexSin := sinTab[index]
 | 
						|
	return indexCos + delta*(-indexSin+delta*(-indexCos*oneDivF2+delta*(indexSin*oneDivF3+delta*indexCos*oneDivF4)))
 | 
						|
}
 | 
						|
 | 
						|
// asin is a sloppy math (faster) implementation of math.Asin
 | 
						|
func asin(a float64) float64 {
 | 
						|
	var negateResult bool
 | 
						|
	if a < 0 {
 | 
						|
		a = -a
 | 
						|
		negateResult = true
 | 
						|
	}
 | 
						|
	if a <= asinMaxValueForTabs {
 | 
						|
		index := int(a*asinIndexer + 0.5)
 | 
						|
		delta := a - float64(index)*asinDelta
 | 
						|
		result := asinTab[index] + delta*(asinDer1DivF1Tab[index]+delta*(asinDer2DivF2Tab[index]+delta*(asinDer3DivF3Tab[index]+delta*asinDer4DivF4Tab[index])))
 | 
						|
		if negateResult {
 | 
						|
			return -result
 | 
						|
		}
 | 
						|
		return result
 | 
						|
	}
 | 
						|
	// value > ASIN_MAX_VALUE_FOR_TABS, or value is NaN
 | 
						|
	// This part is derived from fdlibm.
 | 
						|
	if a < 1 {
 | 
						|
		t := (1.0 - a) * 0.5
 | 
						|
		p := t * (asinPs0 + t*(asinPs1+t*(asinPs2+t*(asinPs3+t*(asinPs4+t+asinPs5)))))
 | 
						|
		q := 1.0 + t*(asinQs1+t*(asinQs2+t*(asinQs3+t*asinQs4)))
 | 
						|
		s := math.Sqrt(t)
 | 
						|
		z := s + s*(p/q)
 | 
						|
		result := asinPio2Hi - ((z + z) - asinPio2Lo)
 | 
						|
		if negateResult {
 | 
						|
			return -result
 | 
						|
		}
 | 
						|
		return result
 | 
						|
	}
 | 
						|
	// value >= 1.0, or value is NaN
 | 
						|
	if a == 1.0 {
 | 
						|
		if negateResult {
 | 
						|
			return -math.Pi / 2
 | 
						|
		}
 | 
						|
		return math.Pi / 2
 | 
						|
	}
 | 
						|
	return math.NaN()
 | 
						|
}
 |