mirror of
				https://codeberg.org/forgejo/forgejo.git
				synced 2025-11-04 00:11:04 +00:00 
			
		
		
		
	* Switch to keybase go-crypto (for some elliptic curve key) + test
* Use assert.NoError 
and add a little more context to failing test description
* Use assert.(No)Error everywhere 🌈
and assert.Error in place of .Nil/.NotNil
		
	
			
		
			
				
	
	
		
			325 lines
		
	
	
	
		
			11 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			325 lines
		
	
	
	
		
			11 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
// Copyright 2009 The Go Authors. All rights reserved.
 | 
						|
// Use of this source code is governed by a BSD-style
 | 
						|
// license that can be found in the LICENSE file.
 | 
						|
 | 
						|
package rsa
 | 
						|
 | 
						|
import (
 | 
						|
	"crypto"
 | 
						|
	"crypto/subtle"
 | 
						|
	"errors"
 | 
						|
	"io"
 | 
						|
	"math/big"
 | 
						|
)
 | 
						|
 | 
						|
// This file implements encryption and decryption using PKCS#1 v1.5 padding.
 | 
						|
 | 
						|
// PKCS1v15DecrypterOpts is for passing options to PKCS#1 v1.5 decryption using
 | 
						|
// the crypto.Decrypter interface.
 | 
						|
type PKCS1v15DecryptOptions struct {
 | 
						|
	// SessionKeyLen is the length of the session key that is being
 | 
						|
	// decrypted. If not zero, then a padding error during decryption will
 | 
						|
	// cause a random plaintext of this length to be returned rather than
 | 
						|
	// an error. These alternatives happen in constant time.
 | 
						|
	SessionKeyLen int
 | 
						|
}
 | 
						|
 | 
						|
// EncryptPKCS1v15 encrypts the given message with RSA and the padding scheme from PKCS#1 v1.5.
 | 
						|
// The message must be no longer than the length of the public modulus minus 11 bytes.
 | 
						|
//
 | 
						|
// The rand parameter is used as a source of entropy to ensure that encrypting
 | 
						|
// the same message twice doesn't result in the same ciphertext.
 | 
						|
//
 | 
						|
// WARNING: use of this function to encrypt plaintexts other than session keys
 | 
						|
// is dangerous. Use RSA OAEP in new protocols.
 | 
						|
func EncryptPKCS1v15(rand io.Reader, pub *PublicKey, msg []byte) (out []byte, err error) {
 | 
						|
	if err := checkPub(pub); err != nil {
 | 
						|
		return nil, err
 | 
						|
	}
 | 
						|
	k := (pub.N.BitLen() + 7) / 8
 | 
						|
	if len(msg) > k-11 {
 | 
						|
		err = ErrMessageTooLong
 | 
						|
		return
 | 
						|
	}
 | 
						|
 | 
						|
	// EM = 0x00 || 0x02 || PS || 0x00 || M
 | 
						|
	em := make([]byte, k)
 | 
						|
	em[1] = 2
 | 
						|
	ps, mm := em[2:len(em)-len(msg)-1], em[len(em)-len(msg):]
 | 
						|
	err = nonZeroRandomBytes(ps, rand)
 | 
						|
	if err != nil {
 | 
						|
		return
 | 
						|
	}
 | 
						|
	em[len(em)-len(msg)-1] = 0
 | 
						|
	copy(mm, msg)
 | 
						|
 | 
						|
	m := new(big.Int).SetBytes(em)
 | 
						|
	c := encrypt(new(big.Int), pub, m)
 | 
						|
 | 
						|
	copyWithLeftPad(em, c.Bytes())
 | 
						|
	out = em
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
// DecryptPKCS1v15 decrypts a plaintext using RSA and the padding scheme from PKCS#1 v1.5.
 | 
						|
// If rand != nil, it uses RSA blinding to avoid timing side-channel attacks.
 | 
						|
//
 | 
						|
// Note that whether this function returns an error or not discloses secret
 | 
						|
// information. If an attacker can cause this function to run repeatedly and
 | 
						|
// learn whether each instance returned an error then they can decrypt and
 | 
						|
// forge signatures as if they had the private key. See
 | 
						|
// DecryptPKCS1v15SessionKey for a way of solving this problem.
 | 
						|
func DecryptPKCS1v15(rand io.Reader, priv *PrivateKey, ciphertext []byte) (out []byte, err error) {
 | 
						|
	if err := checkPub(&priv.PublicKey); err != nil {
 | 
						|
		return nil, err
 | 
						|
	}
 | 
						|
	valid, out, index, err := decryptPKCS1v15(rand, priv, ciphertext)
 | 
						|
	if err != nil {
 | 
						|
		return
 | 
						|
	}
 | 
						|
	if valid == 0 {
 | 
						|
		return nil, ErrDecryption
 | 
						|
	}
 | 
						|
	out = out[index:]
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
// DecryptPKCS1v15SessionKey decrypts a session key using RSA and the padding scheme from PKCS#1 v1.5.
 | 
						|
// If rand != nil, it uses RSA blinding to avoid timing side-channel attacks.
 | 
						|
// It returns an error if the ciphertext is the wrong length or if the
 | 
						|
// ciphertext is greater than the public modulus. Otherwise, no error is
 | 
						|
// returned. If the padding is valid, the resulting plaintext message is copied
 | 
						|
// into key. Otherwise, key is unchanged. These alternatives occur in constant
 | 
						|
// time. It is intended that the user of this function generate a random
 | 
						|
// session key beforehand and continue the protocol with the resulting value.
 | 
						|
// This will remove any possibility that an attacker can learn any information
 | 
						|
// about the plaintext.
 | 
						|
// See ``Chosen Ciphertext Attacks Against Protocols Based on the RSA
 | 
						|
// Encryption Standard PKCS #1'', Daniel Bleichenbacher, Advances in Cryptology
 | 
						|
// (Crypto '98).
 | 
						|
//
 | 
						|
// Note that if the session key is too small then it may be possible for an
 | 
						|
// attacker to brute-force it. If they can do that then they can learn whether
 | 
						|
// a random value was used (because it'll be different for the same ciphertext)
 | 
						|
// and thus whether the padding was correct. This defeats the point of this
 | 
						|
// function. Using at least a 16-byte key will protect against this attack.
 | 
						|
func DecryptPKCS1v15SessionKey(rand io.Reader, priv *PrivateKey, ciphertext []byte, key []byte) (err error) {
 | 
						|
	if err := checkPub(&priv.PublicKey); err != nil {
 | 
						|
		return err
 | 
						|
	}
 | 
						|
	k := (priv.N.BitLen() + 7) / 8
 | 
						|
	if k-(len(key)+3+8) < 0 {
 | 
						|
		return ErrDecryption
 | 
						|
	}
 | 
						|
 | 
						|
	valid, em, index, err := decryptPKCS1v15(rand, priv, ciphertext)
 | 
						|
	if err != nil {
 | 
						|
		return
 | 
						|
	}
 | 
						|
 | 
						|
	if len(em) != k {
 | 
						|
		// This should be impossible because decryptPKCS1v15 always
 | 
						|
		// returns the full slice.
 | 
						|
		return ErrDecryption
 | 
						|
	}
 | 
						|
 | 
						|
	valid &= subtle.ConstantTimeEq(int32(len(em)-index), int32(len(key)))
 | 
						|
	subtle.ConstantTimeCopy(valid, key, em[len(em)-len(key):])
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
// decryptPKCS1v15 decrypts ciphertext using priv and blinds the operation if
 | 
						|
// rand is not nil. It returns one or zero in valid that indicates whether the
 | 
						|
// plaintext was correctly structured. In either case, the plaintext is
 | 
						|
// returned in em so that it may be read independently of whether it was valid
 | 
						|
// in order to maintain constant memory access patterns. If the plaintext was
 | 
						|
// valid then index contains the index of the original message in em.
 | 
						|
func decryptPKCS1v15(rand io.Reader, priv *PrivateKey, ciphertext []byte) (valid int, em []byte, index int, err error) {
 | 
						|
	k := (priv.N.BitLen() + 7) / 8
 | 
						|
	if k < 11 {
 | 
						|
		err = ErrDecryption
 | 
						|
		return
 | 
						|
	}
 | 
						|
 | 
						|
	c := new(big.Int).SetBytes(ciphertext)
 | 
						|
	m, err := decrypt(rand, priv, c)
 | 
						|
	if err != nil {
 | 
						|
		return
 | 
						|
	}
 | 
						|
 | 
						|
	em = leftPad(m.Bytes(), k)
 | 
						|
	firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0)
 | 
						|
	secondByteIsTwo := subtle.ConstantTimeByteEq(em[1], 2)
 | 
						|
 | 
						|
	// The remainder of the plaintext must be a string of non-zero random
 | 
						|
	// octets, followed by a 0, followed by the message.
 | 
						|
	//   lookingForIndex: 1 iff we are still looking for the zero.
 | 
						|
	//   index: the offset of the first zero byte.
 | 
						|
	lookingForIndex := 1
 | 
						|
 | 
						|
	for i := 2; i < len(em); i++ {
 | 
						|
		equals0 := subtle.ConstantTimeByteEq(em[i], 0)
 | 
						|
		index = subtle.ConstantTimeSelect(lookingForIndex&equals0, i, index)
 | 
						|
		lookingForIndex = subtle.ConstantTimeSelect(equals0, 0, lookingForIndex)
 | 
						|
	}
 | 
						|
 | 
						|
	// The PS padding must be at least 8 bytes long, and it starts two
 | 
						|
	// bytes into em.
 | 
						|
	validPS := subtle.ConstantTimeLessOrEq(2+8, index)
 | 
						|
 | 
						|
	valid = firstByteIsZero & secondByteIsTwo & (^lookingForIndex & 1) & validPS
 | 
						|
	index = subtle.ConstantTimeSelect(valid, index+1, 0)
 | 
						|
	return valid, em, index, nil
 | 
						|
}
 | 
						|
 | 
						|
// nonZeroRandomBytes fills the given slice with non-zero random octets.
 | 
						|
func nonZeroRandomBytes(s []byte, rand io.Reader) (err error) {
 | 
						|
	_, err = io.ReadFull(rand, s)
 | 
						|
	if err != nil {
 | 
						|
		return
 | 
						|
	}
 | 
						|
 | 
						|
	for i := 0; i < len(s); i++ {
 | 
						|
		for s[i] == 0 {
 | 
						|
			_, err = io.ReadFull(rand, s[i:i+1])
 | 
						|
			if err != nil {
 | 
						|
				return
 | 
						|
			}
 | 
						|
			// In tests, the PRNG may return all zeros so we do
 | 
						|
			// this to break the loop.
 | 
						|
			s[i] ^= 0x42
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
// These are ASN1 DER structures:
 | 
						|
//   DigestInfo ::= SEQUENCE {
 | 
						|
//     digestAlgorithm AlgorithmIdentifier,
 | 
						|
//     digest OCTET STRING
 | 
						|
//   }
 | 
						|
// For performance, we don't use the generic ASN1 encoder. Rather, we
 | 
						|
// precompute a prefix of the digest value that makes a valid ASN1 DER string
 | 
						|
// with the correct contents.
 | 
						|
var hashPrefixes = map[crypto.Hash][]byte{
 | 
						|
	crypto.MD5:       {0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10},
 | 
						|
	crypto.SHA1:      {0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14},
 | 
						|
	crypto.SHA224:    {0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04, 0x05, 0x00, 0x04, 0x1c},
 | 
						|
	crypto.SHA256:    {0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20},
 | 
						|
	crypto.SHA384:    {0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30},
 | 
						|
	crypto.SHA512:    {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40},
 | 
						|
	crypto.MD5SHA1:   {}, // A special TLS case which doesn't use an ASN1 prefix.
 | 
						|
	crypto.RIPEMD160: {0x30, 0x20, 0x30, 0x08, 0x06, 0x06, 0x28, 0xcf, 0x06, 0x03, 0x00, 0x31, 0x04, 0x14},
 | 
						|
}
 | 
						|
 | 
						|
// SignPKCS1v15 calculates the signature of hashed using RSASSA-PKCS1-V1_5-SIGN from RSA PKCS#1 v1.5.
 | 
						|
// Note that hashed must be the result of hashing the input message using the
 | 
						|
// given hash function. If hash is zero, hashed is signed directly. This isn't
 | 
						|
// advisable except for interoperability.
 | 
						|
//
 | 
						|
// If rand is not nil then RSA blinding will be used to avoid timing side-channel attacks.
 | 
						|
//
 | 
						|
// This function is deterministic. Thus, if the set of possible messages is
 | 
						|
// small, an attacker may be able to build a map from messages to signatures
 | 
						|
// and identify the signed messages. As ever, signatures provide authenticity,
 | 
						|
// not confidentiality.
 | 
						|
func SignPKCS1v15(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed []byte) (s []byte, err error) {
 | 
						|
	hashLen, prefix, err := pkcs1v15HashInfo(hash, len(hashed))
 | 
						|
	if err != nil {
 | 
						|
		return
 | 
						|
	}
 | 
						|
 | 
						|
	tLen := len(prefix) + hashLen
 | 
						|
	k := (priv.N.BitLen() + 7) / 8
 | 
						|
	if k < tLen+11 {
 | 
						|
		return nil, ErrMessageTooLong
 | 
						|
	}
 | 
						|
 | 
						|
	// EM = 0x00 || 0x01 || PS || 0x00 || T
 | 
						|
	em := make([]byte, k)
 | 
						|
	em[1] = 1
 | 
						|
	for i := 2; i < k-tLen-1; i++ {
 | 
						|
		em[i] = 0xff
 | 
						|
	}
 | 
						|
	copy(em[k-tLen:k-hashLen], prefix)
 | 
						|
	copy(em[k-hashLen:k], hashed)
 | 
						|
 | 
						|
	m := new(big.Int).SetBytes(em)
 | 
						|
	c, err := decryptAndCheck(rand, priv, m)
 | 
						|
	if err != nil {
 | 
						|
		return
 | 
						|
	}
 | 
						|
 | 
						|
	copyWithLeftPad(em, c.Bytes())
 | 
						|
	s = em
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
// VerifyPKCS1v15 verifies an RSA PKCS#1 v1.5 signature.
 | 
						|
// hashed is the result of hashing the input message using the given hash
 | 
						|
// function and sig is the signature. A valid signature is indicated by
 | 
						|
// returning a nil error. If hash is zero then hashed is used directly. This
 | 
						|
// isn't advisable except for interoperability.
 | 
						|
func VerifyPKCS1v15(pub *PublicKey, hash crypto.Hash, hashed []byte, sig []byte) (err error) {
 | 
						|
	hashLen, prefix, err := pkcs1v15HashInfo(hash, len(hashed))
 | 
						|
	if err != nil {
 | 
						|
		return
 | 
						|
	}
 | 
						|
 | 
						|
	tLen := len(prefix) + hashLen
 | 
						|
	k := (pub.N.BitLen() + 7) / 8
 | 
						|
	if k < tLen+11 {
 | 
						|
		err = ErrVerification
 | 
						|
		return
 | 
						|
	}
 | 
						|
 | 
						|
	c := new(big.Int).SetBytes(sig)
 | 
						|
	m := encrypt(new(big.Int), pub, c)
 | 
						|
	em := leftPad(m.Bytes(), k)
 | 
						|
	// EM = 0x00 || 0x01 || PS || 0x00 || T
 | 
						|
 | 
						|
	ok := subtle.ConstantTimeByteEq(em[0], 0)
 | 
						|
	ok &= subtle.ConstantTimeByteEq(em[1], 1)
 | 
						|
	ok &= subtle.ConstantTimeCompare(em[k-hashLen:k], hashed)
 | 
						|
	ok &= subtle.ConstantTimeCompare(em[k-tLen:k-hashLen], prefix)
 | 
						|
	ok &= subtle.ConstantTimeByteEq(em[k-tLen-1], 0)
 | 
						|
 | 
						|
	for i := 2; i < k-tLen-1; i++ {
 | 
						|
		ok &= subtle.ConstantTimeByteEq(em[i], 0xff)
 | 
						|
	}
 | 
						|
 | 
						|
	if ok != 1 {
 | 
						|
		return ErrVerification
 | 
						|
	}
 | 
						|
 | 
						|
	return nil
 | 
						|
}
 | 
						|
 | 
						|
func pkcs1v15HashInfo(hash crypto.Hash, inLen int) (hashLen int, prefix []byte, err error) {
 | 
						|
	// Special case: crypto.Hash(0) is used to indicate that the data is
 | 
						|
	// signed directly.
 | 
						|
	if hash == 0 {
 | 
						|
		return inLen, nil, nil
 | 
						|
	}
 | 
						|
 | 
						|
	hashLen = hash.Size()
 | 
						|
	if inLen != hashLen {
 | 
						|
		return 0, nil, errors.New("crypto/rsa: input must be hashed message")
 | 
						|
	}
 | 
						|
	prefix, ok := hashPrefixes[hash]
 | 
						|
	if !ok {
 | 
						|
		return 0, nil, errors.New("crypto/rsa: unsupported hash function")
 | 
						|
	}
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
// copyWithLeftPad copies src to the end of dest, padding with zero bytes as
 | 
						|
// needed.
 | 
						|
func copyWithLeftPad(dest, src []byte) {
 | 
						|
	numPaddingBytes := len(dest) - len(src)
 | 
						|
	for i := 0; i < numPaddingBytes; i++ {
 | 
						|
		dest[i] = 0
 | 
						|
	}
 | 
						|
	copy(dest[numPaddingBytes:], src)
 | 
						|
}
 |