mirror of
				https://codeberg.org/forgejo/forgejo.git
				synced 2025-11-04 08:21:11 +00:00 
			
		
		
		
	* update macaron to v1.5 of fork * update macaron to v1.5 of fork * test gzip PR * add push method impl to context_tests * use proper gzip commit Co-authored-by: zeripath <art27@cantab.net> Co-authored-by: Lunny Xiao <xiaolunwen@gmail.com>
		
			
				
	
	
		
			657 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			Go
		
	
	
	
		
			Vendored
		
	
	
	
			
		
		
	
	
			657 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			Go
		
	
	
	
		
			Vendored
		
	
	
	
package huff0
 | 
						|
 | 
						|
import (
 | 
						|
	"fmt"
 | 
						|
	"runtime"
 | 
						|
	"sync"
 | 
						|
)
 | 
						|
 | 
						|
// Compress1X will compress the input.
 | 
						|
// The output can be decoded using Decompress1X.
 | 
						|
// Supply a Scratch object. The scratch object contains state about re-use,
 | 
						|
// So when sharing across independent encodes, be sure to set the re-use policy.
 | 
						|
func Compress1X(in []byte, s *Scratch) (out []byte, reUsed bool, err error) {
 | 
						|
	s, err = s.prepare(in)
 | 
						|
	if err != nil {
 | 
						|
		return nil, false, err
 | 
						|
	}
 | 
						|
	return compress(in, s, s.compress1X)
 | 
						|
}
 | 
						|
 | 
						|
// Compress4X will compress the input. The input is split into 4 independent blocks
 | 
						|
// and compressed similar to Compress1X.
 | 
						|
// The output can be decoded using Decompress4X.
 | 
						|
// Supply a Scratch object. The scratch object contains state about re-use,
 | 
						|
// So when sharing across independent encodes, be sure to set the re-use policy.
 | 
						|
func Compress4X(in []byte, s *Scratch) (out []byte, reUsed bool, err error) {
 | 
						|
	s, err = s.prepare(in)
 | 
						|
	if err != nil {
 | 
						|
		return nil, false, err
 | 
						|
	}
 | 
						|
	if false {
 | 
						|
		// TODO: compress4Xp only slightly faster.
 | 
						|
		const parallelThreshold = 8 << 10
 | 
						|
		if len(in) < parallelThreshold || runtime.GOMAXPROCS(0) == 1 {
 | 
						|
			return compress(in, s, s.compress4X)
 | 
						|
		}
 | 
						|
		return compress(in, s, s.compress4Xp)
 | 
						|
	}
 | 
						|
	return compress(in, s, s.compress4X)
 | 
						|
}
 | 
						|
 | 
						|
func compress(in []byte, s *Scratch, compressor func(src []byte) ([]byte, error)) (out []byte, reUsed bool, err error) {
 | 
						|
	// Nuke previous table if we cannot reuse anyway.
 | 
						|
	if s.Reuse == ReusePolicyNone {
 | 
						|
		s.prevTable = s.prevTable[:0]
 | 
						|
	}
 | 
						|
 | 
						|
	// Create histogram, if none was provided.
 | 
						|
	maxCount := s.maxCount
 | 
						|
	var canReuse = false
 | 
						|
	if maxCount == 0 {
 | 
						|
		maxCount, canReuse = s.countSimple(in)
 | 
						|
	} else {
 | 
						|
		canReuse = s.canUseTable(s.prevTable)
 | 
						|
	}
 | 
						|
 | 
						|
	// We want the output size to be less than this:
 | 
						|
	wantSize := len(in)
 | 
						|
	if s.WantLogLess > 0 {
 | 
						|
		wantSize -= wantSize >> s.WantLogLess
 | 
						|
	}
 | 
						|
 | 
						|
	// Reset for next run.
 | 
						|
	s.clearCount = true
 | 
						|
	s.maxCount = 0
 | 
						|
	if maxCount >= len(in) {
 | 
						|
		if maxCount > len(in) {
 | 
						|
			return nil, false, fmt.Errorf("maxCount (%d) > length (%d)", maxCount, len(in))
 | 
						|
		}
 | 
						|
		if len(in) == 1 {
 | 
						|
			return nil, false, ErrIncompressible
 | 
						|
		}
 | 
						|
		// One symbol, use RLE
 | 
						|
		return nil, false, ErrUseRLE
 | 
						|
	}
 | 
						|
	if maxCount == 1 || maxCount < (len(in)>>7) {
 | 
						|
		// Each symbol present maximum once or too well distributed.
 | 
						|
		return nil, false, ErrIncompressible
 | 
						|
	}
 | 
						|
	if s.Reuse == ReusePolicyMust && !canReuse {
 | 
						|
		// We must reuse, but we can't.
 | 
						|
		return nil, false, ErrIncompressible
 | 
						|
	}
 | 
						|
	if (s.Reuse == ReusePolicyPrefer || s.Reuse == ReusePolicyMust) && canReuse {
 | 
						|
		keepTable := s.cTable
 | 
						|
		keepTL := s.actualTableLog
 | 
						|
		s.cTable = s.prevTable
 | 
						|
		s.actualTableLog = s.prevTableLog
 | 
						|
		s.Out, err = compressor(in)
 | 
						|
		s.cTable = keepTable
 | 
						|
		s.actualTableLog = keepTL
 | 
						|
		if err == nil && len(s.Out) < wantSize {
 | 
						|
			s.OutData = s.Out
 | 
						|
			return s.Out, true, nil
 | 
						|
		}
 | 
						|
		if s.Reuse == ReusePolicyMust {
 | 
						|
			return nil, false, ErrIncompressible
 | 
						|
		}
 | 
						|
		// Do not attempt to re-use later.
 | 
						|
		s.prevTable = s.prevTable[:0]
 | 
						|
	}
 | 
						|
 | 
						|
	// Calculate new table.
 | 
						|
	err = s.buildCTable()
 | 
						|
	if err != nil {
 | 
						|
		return nil, false, err
 | 
						|
	}
 | 
						|
 | 
						|
	if false && !s.canUseTable(s.cTable) {
 | 
						|
		panic("invalid table generated")
 | 
						|
	}
 | 
						|
 | 
						|
	if s.Reuse == ReusePolicyAllow && canReuse {
 | 
						|
		hSize := len(s.Out)
 | 
						|
		oldSize := s.prevTable.estimateSize(s.count[:s.symbolLen])
 | 
						|
		newSize := s.cTable.estimateSize(s.count[:s.symbolLen])
 | 
						|
		if oldSize <= hSize+newSize || hSize+12 >= wantSize {
 | 
						|
			// Retain cTable even if we re-use.
 | 
						|
			keepTable := s.cTable
 | 
						|
			keepTL := s.actualTableLog
 | 
						|
 | 
						|
			s.cTable = s.prevTable
 | 
						|
			s.actualTableLog = s.prevTableLog
 | 
						|
			s.Out, err = compressor(in)
 | 
						|
 | 
						|
			// Restore ctable.
 | 
						|
			s.cTable = keepTable
 | 
						|
			s.actualTableLog = keepTL
 | 
						|
			if err != nil {
 | 
						|
				return nil, false, err
 | 
						|
			}
 | 
						|
			if len(s.Out) >= wantSize {
 | 
						|
				return nil, false, ErrIncompressible
 | 
						|
			}
 | 
						|
			s.OutData = s.Out
 | 
						|
			return s.Out, true, nil
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	// Use new table
 | 
						|
	err = s.cTable.write(s)
 | 
						|
	if err != nil {
 | 
						|
		s.OutTable = nil
 | 
						|
		return nil, false, err
 | 
						|
	}
 | 
						|
	s.OutTable = s.Out
 | 
						|
 | 
						|
	// Compress using new table
 | 
						|
	s.Out, err = compressor(in)
 | 
						|
	if err != nil {
 | 
						|
		s.OutTable = nil
 | 
						|
		return nil, false, err
 | 
						|
	}
 | 
						|
	if len(s.Out) >= wantSize {
 | 
						|
		s.OutTable = nil
 | 
						|
		return nil, false, ErrIncompressible
 | 
						|
	}
 | 
						|
	// Move current table into previous.
 | 
						|
	s.prevTable, s.prevTableLog, s.cTable = s.cTable, s.actualTableLog, s.prevTable[:0]
 | 
						|
	s.OutData = s.Out[len(s.OutTable):]
 | 
						|
	return s.Out, false, nil
 | 
						|
}
 | 
						|
 | 
						|
func (s *Scratch) compress1X(src []byte) ([]byte, error) {
 | 
						|
	return s.compress1xDo(s.Out, src)
 | 
						|
}
 | 
						|
 | 
						|
func (s *Scratch) compress1xDo(dst, src []byte) ([]byte, error) {
 | 
						|
	var bw = bitWriter{out: dst}
 | 
						|
 | 
						|
	// N is length divisible by 4.
 | 
						|
	n := len(src)
 | 
						|
	n -= n & 3
 | 
						|
	cTable := s.cTable[:256]
 | 
						|
 | 
						|
	// Encode last bytes.
 | 
						|
	for i := len(src) & 3; i > 0; i-- {
 | 
						|
		bw.encSymbol(cTable, src[n+i-1])
 | 
						|
	}
 | 
						|
	n -= 4
 | 
						|
	if s.actualTableLog <= 8 {
 | 
						|
		for ; n >= 0; n -= 4 {
 | 
						|
			tmp := src[n : n+4]
 | 
						|
			// tmp should be len 4
 | 
						|
			bw.flush32()
 | 
						|
			bw.encTwoSymbols(cTable, tmp[3], tmp[2])
 | 
						|
			bw.encTwoSymbols(cTable, tmp[1], tmp[0])
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for ; n >= 0; n -= 4 {
 | 
						|
			tmp := src[n : n+4]
 | 
						|
			// tmp should be len 4
 | 
						|
			bw.flush32()
 | 
						|
			bw.encTwoSymbols(cTable, tmp[3], tmp[2])
 | 
						|
			bw.flush32()
 | 
						|
			bw.encTwoSymbols(cTable, tmp[1], tmp[0])
 | 
						|
		}
 | 
						|
	}
 | 
						|
	err := bw.close()
 | 
						|
	return bw.out, err
 | 
						|
}
 | 
						|
 | 
						|
var sixZeros [6]byte
 | 
						|
 | 
						|
func (s *Scratch) compress4X(src []byte) ([]byte, error) {
 | 
						|
	if len(src) < 12 {
 | 
						|
		return nil, ErrIncompressible
 | 
						|
	}
 | 
						|
	segmentSize := (len(src) + 3) / 4
 | 
						|
 | 
						|
	// Add placeholder for output length
 | 
						|
	offsetIdx := len(s.Out)
 | 
						|
	s.Out = append(s.Out, sixZeros[:]...)
 | 
						|
 | 
						|
	for i := 0; i < 4; i++ {
 | 
						|
		toDo := src
 | 
						|
		if len(toDo) > segmentSize {
 | 
						|
			toDo = toDo[:segmentSize]
 | 
						|
		}
 | 
						|
		src = src[len(toDo):]
 | 
						|
 | 
						|
		var err error
 | 
						|
		idx := len(s.Out)
 | 
						|
		s.Out, err = s.compress1xDo(s.Out, toDo)
 | 
						|
		if err != nil {
 | 
						|
			return nil, err
 | 
						|
		}
 | 
						|
		// Write compressed length as little endian before block.
 | 
						|
		if i < 3 {
 | 
						|
			// Last length is not written.
 | 
						|
			length := len(s.Out) - idx
 | 
						|
			s.Out[i*2+offsetIdx] = byte(length)
 | 
						|
			s.Out[i*2+offsetIdx+1] = byte(length >> 8)
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return s.Out, nil
 | 
						|
}
 | 
						|
 | 
						|
// compress4Xp will compress 4 streams using separate goroutines.
 | 
						|
func (s *Scratch) compress4Xp(src []byte) ([]byte, error) {
 | 
						|
	if len(src) < 12 {
 | 
						|
		return nil, ErrIncompressible
 | 
						|
	}
 | 
						|
	// Add placeholder for output length
 | 
						|
	s.Out = s.Out[:6]
 | 
						|
 | 
						|
	segmentSize := (len(src) + 3) / 4
 | 
						|
	var wg sync.WaitGroup
 | 
						|
	var errs [4]error
 | 
						|
	wg.Add(4)
 | 
						|
	for i := 0; i < 4; i++ {
 | 
						|
		toDo := src
 | 
						|
		if len(toDo) > segmentSize {
 | 
						|
			toDo = toDo[:segmentSize]
 | 
						|
		}
 | 
						|
		src = src[len(toDo):]
 | 
						|
 | 
						|
		// Separate goroutine for each block.
 | 
						|
		go func(i int) {
 | 
						|
			s.tmpOut[i], errs[i] = s.compress1xDo(s.tmpOut[i][:0], toDo)
 | 
						|
			wg.Done()
 | 
						|
		}(i)
 | 
						|
	}
 | 
						|
	wg.Wait()
 | 
						|
	for i := 0; i < 4; i++ {
 | 
						|
		if errs[i] != nil {
 | 
						|
			return nil, errs[i]
 | 
						|
		}
 | 
						|
		o := s.tmpOut[i]
 | 
						|
		// Write compressed length as little endian before block.
 | 
						|
		if i < 3 {
 | 
						|
			// Last length is not written.
 | 
						|
			s.Out[i*2] = byte(len(o))
 | 
						|
			s.Out[i*2+1] = byte(len(o) >> 8)
 | 
						|
		}
 | 
						|
 | 
						|
		// Write output.
 | 
						|
		s.Out = append(s.Out, o...)
 | 
						|
	}
 | 
						|
	return s.Out, nil
 | 
						|
}
 | 
						|
 | 
						|
// countSimple will create a simple histogram in s.count.
 | 
						|
// Returns the biggest count.
 | 
						|
// Does not update s.clearCount.
 | 
						|
func (s *Scratch) countSimple(in []byte) (max int, reuse bool) {
 | 
						|
	reuse = true
 | 
						|
	for _, v := range in {
 | 
						|
		s.count[v]++
 | 
						|
	}
 | 
						|
	m := uint32(0)
 | 
						|
	if len(s.prevTable) > 0 {
 | 
						|
		for i, v := range s.count[:] {
 | 
						|
			if v > m {
 | 
						|
				m = v
 | 
						|
			}
 | 
						|
			if v > 0 {
 | 
						|
				s.symbolLen = uint16(i) + 1
 | 
						|
				if i >= len(s.prevTable) {
 | 
						|
					reuse = false
 | 
						|
				} else {
 | 
						|
					if s.prevTable[i].nBits == 0 {
 | 
						|
						reuse = false
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
		return int(m), reuse
 | 
						|
	}
 | 
						|
	for i, v := range s.count[:] {
 | 
						|
		if v > m {
 | 
						|
			m = v
 | 
						|
		}
 | 
						|
		if v > 0 {
 | 
						|
			s.symbolLen = uint16(i) + 1
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return int(m), false
 | 
						|
}
 | 
						|
 | 
						|
func (s *Scratch) canUseTable(c cTable) bool {
 | 
						|
	if len(c) < int(s.symbolLen) {
 | 
						|
		return false
 | 
						|
	}
 | 
						|
	for i, v := range s.count[:s.symbolLen] {
 | 
						|
		if v != 0 && c[i].nBits == 0 {
 | 
						|
			return false
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return true
 | 
						|
}
 | 
						|
 | 
						|
func (s *Scratch) validateTable(c cTable) bool {
 | 
						|
	if len(c) < int(s.symbolLen) {
 | 
						|
		return false
 | 
						|
	}
 | 
						|
	for i, v := range s.count[:s.symbolLen] {
 | 
						|
		if v != 0 {
 | 
						|
			if c[i].nBits == 0 {
 | 
						|
				return false
 | 
						|
			}
 | 
						|
			if c[i].nBits > s.actualTableLog {
 | 
						|
				return false
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return true
 | 
						|
}
 | 
						|
 | 
						|
// minTableLog provides the minimum logSize to safely represent a distribution.
 | 
						|
func (s *Scratch) minTableLog() uint8 {
 | 
						|
	minBitsSrc := highBit32(uint32(s.br.remain())) + 1
 | 
						|
	minBitsSymbols := highBit32(uint32(s.symbolLen-1)) + 2
 | 
						|
	if minBitsSrc < minBitsSymbols {
 | 
						|
		return uint8(minBitsSrc)
 | 
						|
	}
 | 
						|
	return uint8(minBitsSymbols)
 | 
						|
}
 | 
						|
 | 
						|
// optimalTableLog calculates and sets the optimal tableLog in s.actualTableLog
 | 
						|
func (s *Scratch) optimalTableLog() {
 | 
						|
	tableLog := s.TableLog
 | 
						|
	minBits := s.minTableLog()
 | 
						|
	maxBitsSrc := uint8(highBit32(uint32(s.br.remain()-1))) - 1
 | 
						|
	if maxBitsSrc < tableLog {
 | 
						|
		// Accuracy can be reduced
 | 
						|
		tableLog = maxBitsSrc
 | 
						|
	}
 | 
						|
	if minBits > tableLog {
 | 
						|
		tableLog = minBits
 | 
						|
	}
 | 
						|
	// Need a minimum to safely represent all symbol values
 | 
						|
	if tableLog < minTablelog {
 | 
						|
		tableLog = minTablelog
 | 
						|
	}
 | 
						|
	if tableLog > tableLogMax {
 | 
						|
		tableLog = tableLogMax
 | 
						|
	}
 | 
						|
	s.actualTableLog = tableLog
 | 
						|
}
 | 
						|
 | 
						|
type cTableEntry struct {
 | 
						|
	val   uint16
 | 
						|
	nBits uint8
 | 
						|
	// We have 8 bits extra
 | 
						|
}
 | 
						|
 | 
						|
const huffNodesMask = huffNodesLen - 1
 | 
						|
 | 
						|
func (s *Scratch) buildCTable() error {
 | 
						|
	s.optimalTableLog()
 | 
						|
	s.huffSort()
 | 
						|
	if cap(s.cTable) < maxSymbolValue+1 {
 | 
						|
		s.cTable = make([]cTableEntry, s.symbolLen, maxSymbolValue+1)
 | 
						|
	} else {
 | 
						|
		s.cTable = s.cTable[:s.symbolLen]
 | 
						|
		for i := range s.cTable {
 | 
						|
			s.cTable[i] = cTableEntry{}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	var startNode = int16(s.symbolLen)
 | 
						|
	nonNullRank := s.symbolLen - 1
 | 
						|
 | 
						|
	nodeNb := int16(startNode)
 | 
						|
	huffNode := s.nodes[1 : huffNodesLen+1]
 | 
						|
 | 
						|
	// This overlays the slice above, but allows "-1" index lookups.
 | 
						|
	// Different from reference implementation.
 | 
						|
	huffNode0 := s.nodes[0 : huffNodesLen+1]
 | 
						|
 | 
						|
	for huffNode[nonNullRank].count == 0 {
 | 
						|
		nonNullRank--
 | 
						|
	}
 | 
						|
 | 
						|
	lowS := int16(nonNullRank)
 | 
						|
	nodeRoot := nodeNb + lowS - 1
 | 
						|
	lowN := nodeNb
 | 
						|
	huffNode[nodeNb].count = huffNode[lowS].count + huffNode[lowS-1].count
 | 
						|
	huffNode[lowS].parent, huffNode[lowS-1].parent = uint16(nodeNb), uint16(nodeNb)
 | 
						|
	nodeNb++
 | 
						|
	lowS -= 2
 | 
						|
	for n := nodeNb; n <= nodeRoot; n++ {
 | 
						|
		huffNode[n].count = 1 << 30
 | 
						|
	}
 | 
						|
	// fake entry, strong barrier
 | 
						|
	huffNode0[0].count = 1 << 31
 | 
						|
 | 
						|
	// create parents
 | 
						|
	for nodeNb <= nodeRoot {
 | 
						|
		var n1, n2 int16
 | 
						|
		if huffNode0[lowS+1].count < huffNode0[lowN+1].count {
 | 
						|
			n1 = lowS
 | 
						|
			lowS--
 | 
						|
		} else {
 | 
						|
			n1 = lowN
 | 
						|
			lowN++
 | 
						|
		}
 | 
						|
		if huffNode0[lowS+1].count < huffNode0[lowN+1].count {
 | 
						|
			n2 = lowS
 | 
						|
			lowS--
 | 
						|
		} else {
 | 
						|
			n2 = lowN
 | 
						|
			lowN++
 | 
						|
		}
 | 
						|
 | 
						|
		huffNode[nodeNb].count = huffNode0[n1+1].count + huffNode0[n2+1].count
 | 
						|
		huffNode0[n1+1].parent, huffNode0[n2+1].parent = uint16(nodeNb), uint16(nodeNb)
 | 
						|
		nodeNb++
 | 
						|
	}
 | 
						|
 | 
						|
	// distribute weights (unlimited tree height)
 | 
						|
	huffNode[nodeRoot].nbBits = 0
 | 
						|
	for n := nodeRoot - 1; n >= startNode; n-- {
 | 
						|
		huffNode[n].nbBits = huffNode[huffNode[n].parent].nbBits + 1
 | 
						|
	}
 | 
						|
	for n := uint16(0); n <= nonNullRank; n++ {
 | 
						|
		huffNode[n].nbBits = huffNode[huffNode[n].parent].nbBits + 1
 | 
						|
	}
 | 
						|
	s.actualTableLog = s.setMaxHeight(int(nonNullRank))
 | 
						|
	maxNbBits := s.actualTableLog
 | 
						|
 | 
						|
	// fill result into tree (val, nbBits)
 | 
						|
	if maxNbBits > tableLogMax {
 | 
						|
		return fmt.Errorf("internal error: maxNbBits (%d) > tableLogMax (%d)", maxNbBits, tableLogMax)
 | 
						|
	}
 | 
						|
	var nbPerRank [tableLogMax + 1]uint16
 | 
						|
	var valPerRank [16]uint16
 | 
						|
	for _, v := range huffNode[:nonNullRank+1] {
 | 
						|
		nbPerRank[v.nbBits]++
 | 
						|
	}
 | 
						|
	// determine stating value per rank
 | 
						|
	{
 | 
						|
		min := uint16(0)
 | 
						|
		for n := maxNbBits; n > 0; n-- {
 | 
						|
			// get starting value within each rank
 | 
						|
			valPerRank[n] = min
 | 
						|
			min += nbPerRank[n]
 | 
						|
			min >>= 1
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	// push nbBits per symbol, symbol order
 | 
						|
	for _, v := range huffNode[:nonNullRank+1] {
 | 
						|
		s.cTable[v.symbol].nBits = v.nbBits
 | 
						|
	}
 | 
						|
 | 
						|
	// assign value within rank, symbol order
 | 
						|
	t := s.cTable[:s.symbolLen]
 | 
						|
	for n, val := range t {
 | 
						|
		nbits := val.nBits & 15
 | 
						|
		v := valPerRank[nbits]
 | 
						|
		t[n].val = v
 | 
						|
		valPerRank[nbits] = v + 1
 | 
						|
	}
 | 
						|
 | 
						|
	return nil
 | 
						|
}
 | 
						|
 | 
						|
// huffSort will sort symbols, decreasing order.
 | 
						|
func (s *Scratch) huffSort() {
 | 
						|
	type rankPos struct {
 | 
						|
		base    uint32
 | 
						|
		current uint32
 | 
						|
	}
 | 
						|
 | 
						|
	// Clear nodes
 | 
						|
	nodes := s.nodes[:huffNodesLen+1]
 | 
						|
	s.nodes = nodes
 | 
						|
	nodes = nodes[1 : huffNodesLen+1]
 | 
						|
 | 
						|
	// Sort into buckets based on length of symbol count.
 | 
						|
	var rank [32]rankPos
 | 
						|
	for _, v := range s.count[:s.symbolLen] {
 | 
						|
		r := highBit32(v+1) & 31
 | 
						|
		rank[r].base++
 | 
						|
	}
 | 
						|
	// maxBitLength is log2(BlockSizeMax) + 1
 | 
						|
	const maxBitLength = 18 + 1
 | 
						|
	for n := maxBitLength; n > 0; n-- {
 | 
						|
		rank[n-1].base += rank[n].base
 | 
						|
	}
 | 
						|
	for n := range rank[:maxBitLength] {
 | 
						|
		rank[n].current = rank[n].base
 | 
						|
	}
 | 
						|
	for n, c := range s.count[:s.symbolLen] {
 | 
						|
		r := (highBit32(c+1) + 1) & 31
 | 
						|
		pos := rank[r].current
 | 
						|
		rank[r].current++
 | 
						|
		prev := nodes[(pos-1)&huffNodesMask]
 | 
						|
		for pos > rank[r].base && c > prev.count {
 | 
						|
			nodes[pos&huffNodesMask] = prev
 | 
						|
			pos--
 | 
						|
			prev = nodes[(pos-1)&huffNodesMask]
 | 
						|
		}
 | 
						|
		nodes[pos&huffNodesMask] = nodeElt{count: c, symbol: byte(n)}
 | 
						|
	}
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
func (s *Scratch) setMaxHeight(lastNonNull int) uint8 {
 | 
						|
	maxNbBits := s.actualTableLog
 | 
						|
	huffNode := s.nodes[1 : huffNodesLen+1]
 | 
						|
	//huffNode = huffNode[: huffNodesLen]
 | 
						|
 | 
						|
	largestBits := huffNode[lastNonNull].nbBits
 | 
						|
 | 
						|
	// early exit : no elt > maxNbBits
 | 
						|
	if largestBits <= maxNbBits {
 | 
						|
		return largestBits
 | 
						|
	}
 | 
						|
	totalCost := int(0)
 | 
						|
	baseCost := int(1) << (largestBits - maxNbBits)
 | 
						|
	n := uint32(lastNonNull)
 | 
						|
 | 
						|
	for huffNode[n].nbBits > maxNbBits {
 | 
						|
		totalCost += baseCost - (1 << (largestBits - huffNode[n].nbBits))
 | 
						|
		huffNode[n].nbBits = maxNbBits
 | 
						|
		n--
 | 
						|
	}
 | 
						|
	// n stops at huffNode[n].nbBits <= maxNbBits
 | 
						|
 | 
						|
	for huffNode[n].nbBits == maxNbBits {
 | 
						|
		n--
 | 
						|
	}
 | 
						|
	// n end at index of smallest symbol using < maxNbBits
 | 
						|
 | 
						|
	// renorm totalCost
 | 
						|
	totalCost >>= largestBits - maxNbBits /* note : totalCost is necessarily a multiple of baseCost */
 | 
						|
 | 
						|
	// repay normalized cost
 | 
						|
	{
 | 
						|
		const noSymbol = 0xF0F0F0F0
 | 
						|
		var rankLast [tableLogMax + 2]uint32
 | 
						|
 | 
						|
		for i := range rankLast[:] {
 | 
						|
			rankLast[i] = noSymbol
 | 
						|
		}
 | 
						|
 | 
						|
		// Get pos of last (smallest) symbol per rank
 | 
						|
		{
 | 
						|
			currentNbBits := uint8(maxNbBits)
 | 
						|
			for pos := int(n); pos >= 0; pos-- {
 | 
						|
				if huffNode[pos].nbBits >= currentNbBits {
 | 
						|
					continue
 | 
						|
				}
 | 
						|
				currentNbBits = huffNode[pos].nbBits // < maxNbBits
 | 
						|
				rankLast[maxNbBits-currentNbBits] = uint32(pos)
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		for totalCost > 0 {
 | 
						|
			nBitsToDecrease := uint8(highBit32(uint32(totalCost))) + 1
 | 
						|
 | 
						|
			for ; nBitsToDecrease > 1; nBitsToDecrease-- {
 | 
						|
				highPos := rankLast[nBitsToDecrease]
 | 
						|
				lowPos := rankLast[nBitsToDecrease-1]
 | 
						|
				if highPos == noSymbol {
 | 
						|
					continue
 | 
						|
				}
 | 
						|
				if lowPos == noSymbol {
 | 
						|
					break
 | 
						|
				}
 | 
						|
				highTotal := huffNode[highPos].count
 | 
						|
				lowTotal := 2 * huffNode[lowPos].count
 | 
						|
				if highTotal <= lowTotal {
 | 
						|
					break
 | 
						|
				}
 | 
						|
			}
 | 
						|
			// only triggered when no more rank 1 symbol left => find closest one (note : there is necessarily at least one !)
 | 
						|
			// HUF_MAX_TABLELOG test just to please gcc 5+; but it should not be necessary
 | 
						|
			// FIXME: try to remove
 | 
						|
			for (nBitsToDecrease <= tableLogMax) && (rankLast[nBitsToDecrease] == noSymbol) {
 | 
						|
				nBitsToDecrease++
 | 
						|
			}
 | 
						|
			totalCost -= 1 << (nBitsToDecrease - 1)
 | 
						|
			if rankLast[nBitsToDecrease-1] == noSymbol {
 | 
						|
				// this rank is no longer empty
 | 
						|
				rankLast[nBitsToDecrease-1] = rankLast[nBitsToDecrease]
 | 
						|
			}
 | 
						|
			huffNode[rankLast[nBitsToDecrease]].nbBits++
 | 
						|
			if rankLast[nBitsToDecrease] == 0 {
 | 
						|
				/* special case, reached largest symbol */
 | 
						|
				rankLast[nBitsToDecrease] = noSymbol
 | 
						|
			} else {
 | 
						|
				rankLast[nBitsToDecrease]--
 | 
						|
				if huffNode[rankLast[nBitsToDecrease]].nbBits != maxNbBits-nBitsToDecrease {
 | 
						|
					rankLast[nBitsToDecrease] = noSymbol /* this rank is now empty */
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		for totalCost < 0 { /* Sometimes, cost correction overshoot */
 | 
						|
			if rankLast[1] == noSymbol { /* special case : no rank 1 symbol (using maxNbBits-1); let's create one from largest rank 0 (using maxNbBits) */
 | 
						|
				for huffNode[n].nbBits == maxNbBits {
 | 
						|
					n--
 | 
						|
				}
 | 
						|
				huffNode[n+1].nbBits--
 | 
						|
				rankLast[1] = n + 1
 | 
						|
				totalCost++
 | 
						|
				continue
 | 
						|
			}
 | 
						|
			huffNode[rankLast[1]+1].nbBits--
 | 
						|
			rankLast[1]++
 | 
						|
			totalCost++
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return maxNbBits
 | 
						|
}
 | 
						|
 | 
						|
type nodeElt struct {
 | 
						|
	count  uint32
 | 
						|
	parent uint16
 | 
						|
	symbol byte
 | 
						|
	nbBits uint8
 | 
						|
}
 |