mirror of
				https://codeberg.org/forgejo/forgejo.git
				synced 2025-10-25 03:22:36 +00:00 
			
		
		
		
	One of the proposals in #23328 This PR introduces a simple expression calculator (templates/eval/eval.go), it can do basic expression calculations. Many untested template helper functions like `Mul` `Add` can be replaced by this new approach. Then these `Add` / `Mul` / `percentage` / `Subtract` / `DiffStatsWidth` could all use this `Eval`. And it provides enhancements for Golang templates, and improves readability. Some examples: ---- * Before: `{{Add (Mul $glyph.Row 12) 12}}` * After: `{{Eval $glyph.Row "*" 12 "+" 12}}` ---- * Before: `{{if lt (Add $i 1) (len $.Topics)}}` * After: `{{if Eval $i "+" 1 "<" (len $.Topics)}}` ## FAQ ### Why not use an existing expression package? We need a highly customized expression engine: * do the calculation on the fly, without pre-compiling * deal with int/int64/float64 types, to make the result could be used in Golang template. * make the syntax could be used in the Golang template directly * do not introduce too much complex or strange syntax, we just need a simple calculator. * it needs to strictly follow Golang template's behavior, for example, Golang template treats all non-zero values as truth, but many 3rd packages don't do so. ### What's the benefit? * Developers don't need to add more `Add`/`Mul`/`Sub`-like functions, they were getting more and more. Now, only one `Eval` is enough for all cases. * The new code reads better than old `{{Add (Mul $glyph.Row 12) 12}}`, the old one isn't familiar to most procedural programming developers (eg, the Golang expression syntax). * The `Eval` is fully covered by tests, many old `Add`/`Mul`-like functions were never tested. ### The performance? It doesn't use `reflect`, it doesn't need to parse or compile when used in Golang template, the performance is as fast as native Go template. ### Is it too complex? Could it be unstable? The expression calculator program is a common homework for computer science students, and it's widely used as a teaching and practicing purpose for developers. The algorithm is pretty well-known. The behavior can be clearly defined, it is stable.
		
			
				
	
	
		
			344 lines
		
	
	
	
		
			7.5 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			344 lines
		
	
	
	
		
			7.5 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2023 The Gitea Authors. All rights reserved.
 | |
| // SPDX-License-Identifier: MIT
 | |
| 
 | |
| package eval
 | |
| 
 | |
| import (
 | |
| 	"fmt"
 | |
| 	"strconv"
 | |
| 	"strings"
 | |
| 
 | |
| 	"code.gitea.io/gitea/modules/util"
 | |
| )
 | |
| 
 | |
| type Num struct {
 | |
| 	Value any // int64 or float64, nil on error
 | |
| }
 | |
| 
 | |
| var opPrecedence = map[string]int{
 | |
| 	// "(": 1, this is for low precedence like function calls, they are handled separately
 | |
| 	"or":  2,
 | |
| 	"and": 3,
 | |
| 	"not": 4,
 | |
| 	"==":  5, "!=": 5, "<": 5, "<=": 5, ">": 5, ">=": 5,
 | |
| 	"+": 6, "-": 6,
 | |
| 	"*": 7, "/": 7,
 | |
| }
 | |
| 
 | |
| type stack[T any] struct {
 | |
| 	name  string
 | |
| 	elems []T
 | |
| }
 | |
| 
 | |
| func (s *stack[T]) push(t T) {
 | |
| 	s.elems = append(s.elems, t)
 | |
| }
 | |
| 
 | |
| func (s *stack[T]) pop() T {
 | |
| 	if len(s.elems) == 0 {
 | |
| 		panic(s.name + " stack is empty")
 | |
| 	}
 | |
| 	t := s.elems[len(s.elems)-1]
 | |
| 	s.elems = s.elems[:len(s.elems)-1]
 | |
| 	return t
 | |
| }
 | |
| 
 | |
| func (s *stack[T]) peek() T {
 | |
| 	if len(s.elems) == 0 {
 | |
| 		panic(s.name + " stack is empty")
 | |
| 	}
 | |
| 	return s.elems[len(s.elems)-1]
 | |
| }
 | |
| 
 | |
| type operator string
 | |
| 
 | |
| type eval struct {
 | |
| 	stackNum stack[Num]
 | |
| 	stackOp  stack[operator]
 | |
| 	funcMap  map[string]func([]Num) Num
 | |
| }
 | |
| 
 | |
| func newEval() *eval {
 | |
| 	e := &eval{}
 | |
| 	e.stackNum.name = "num"
 | |
| 	e.stackOp.name = "op"
 | |
| 	return e
 | |
| }
 | |
| 
 | |
| func toNum(v any) (Num, error) {
 | |
| 	switch v := v.(type) {
 | |
| 	case string:
 | |
| 		if strings.Contains(v, ".") {
 | |
| 			n, err := strconv.ParseFloat(v, 64)
 | |
| 			if err != nil {
 | |
| 				return Num{n}, err
 | |
| 			}
 | |
| 			return Num{n}, nil
 | |
| 		}
 | |
| 		n, err := strconv.ParseInt(v, 10, 64)
 | |
| 		if err != nil {
 | |
| 			return Num{n}, err
 | |
| 		}
 | |
| 		return Num{n}, nil
 | |
| 	case float32, float64:
 | |
| 		n, _ := util.ToFloat64(v)
 | |
| 		return Num{n}, nil
 | |
| 	default:
 | |
| 		n, err := util.ToInt64(v)
 | |
| 		if err != nil {
 | |
| 			return Num{n}, err
 | |
| 		}
 | |
| 		return Num{n}, nil
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func truth(b bool) int64 {
 | |
| 	if b {
 | |
| 		return int64(1)
 | |
| 	}
 | |
| 	return int64(0)
 | |
| }
 | |
| 
 | |
| func applyOp2Generic[T int64 | float64](op operator, n1, n2 T) Num {
 | |
| 	switch op {
 | |
| 	case "+":
 | |
| 		return Num{n1 + n2}
 | |
| 	case "-":
 | |
| 		return Num{n1 - n2}
 | |
| 	case "*":
 | |
| 		return Num{n1 * n2}
 | |
| 	case "/":
 | |
| 		return Num{n1 / n2}
 | |
| 	case "==":
 | |
| 		return Num{truth(n1 == n2)}
 | |
| 	case "!=":
 | |
| 		return Num{truth(n1 != n2)}
 | |
| 	case "<":
 | |
| 		return Num{truth(n1 < n2)}
 | |
| 	case "<=":
 | |
| 		return Num{truth(n1 <= n2)}
 | |
| 	case ">":
 | |
| 		return Num{truth(n1 > n2)}
 | |
| 	case ">=":
 | |
| 		return Num{truth(n1 >= n2)}
 | |
| 	case "and":
 | |
| 		t1, _ := util.ToFloat64(n1)
 | |
| 		t2, _ := util.ToFloat64(n2)
 | |
| 		return Num{truth(t1 != 0 && t2 != 0)}
 | |
| 	case "or":
 | |
| 		t1, _ := util.ToFloat64(n1)
 | |
| 		t2, _ := util.ToFloat64(n2)
 | |
| 		return Num{truth(t1 != 0 || t2 != 0)}
 | |
| 	}
 | |
| 	panic("unknown operator: " + string(op))
 | |
| }
 | |
| 
 | |
| func applyOp2(op operator, n1, n2 Num) Num {
 | |
| 	float := false
 | |
| 	if _, ok := n1.Value.(float64); ok {
 | |
| 		float = true
 | |
| 	} else if _, ok = n2.Value.(float64); ok {
 | |
| 		float = true
 | |
| 	}
 | |
| 	if float {
 | |
| 		f1, _ := util.ToFloat64(n1.Value)
 | |
| 		f2, _ := util.ToFloat64(n2.Value)
 | |
| 		return applyOp2Generic(op, f1, f2)
 | |
| 	}
 | |
| 	return applyOp2Generic(op, n1.Value.(int64), n2.Value.(int64))
 | |
| }
 | |
| 
 | |
| func toOp(v any) (operator, error) {
 | |
| 	if v, ok := v.(string); ok {
 | |
| 		return operator(v), nil
 | |
| 	}
 | |
| 	return "", fmt.Errorf(`unsupported token type "%T"`, v)
 | |
| }
 | |
| 
 | |
| func (op operator) hasOpenBracket() bool {
 | |
| 	return strings.HasSuffix(string(op), "(") // it's used to support functions like "sum("
 | |
| }
 | |
| 
 | |
| func (op operator) isComma() bool {
 | |
| 	return op == ","
 | |
| }
 | |
| 
 | |
| func (op operator) isCloseBracket() bool {
 | |
| 	return op == ")"
 | |
| }
 | |
| 
 | |
| type ExprError struct {
 | |
| 	msg    string
 | |
| 	tokens []any
 | |
| 	err    error
 | |
| }
 | |
| 
 | |
| func (err ExprError) Error() string {
 | |
| 	sb := strings.Builder{}
 | |
| 	sb.WriteString(err.msg)
 | |
| 	sb.WriteString(" [ ")
 | |
| 	for _, token := range err.tokens {
 | |
| 		_, _ = fmt.Fprintf(&sb, `"%v" `, token)
 | |
| 	}
 | |
| 	sb.WriteString("]")
 | |
| 	if err.err != nil {
 | |
| 		sb.WriteString(": ")
 | |
| 		sb.WriteString(err.err.Error())
 | |
| 	}
 | |
| 	return sb.String()
 | |
| }
 | |
| 
 | |
| func (err ExprError) Unwrap() error {
 | |
| 	return err.err
 | |
| }
 | |
| 
 | |
| func (e *eval) applyOp() {
 | |
| 	op := e.stackOp.pop()
 | |
| 	if op == "not" {
 | |
| 		num := e.stackNum.pop()
 | |
| 		i, _ := util.ToInt64(num.Value)
 | |
| 		e.stackNum.push(Num{truth(i == 0)})
 | |
| 	} else if op.hasOpenBracket() || op.isCloseBracket() || op.isComma() {
 | |
| 		panic(fmt.Sprintf("incomplete sub-expression with operator %q", op))
 | |
| 	} else {
 | |
| 		num2 := e.stackNum.pop()
 | |
| 		num1 := e.stackNum.pop()
 | |
| 		e.stackNum.push(applyOp2(op, num1, num2))
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (e *eval) exec(tokens ...any) (ret Num, err error) {
 | |
| 	defer func() {
 | |
| 		if r := recover(); r != nil {
 | |
| 			rErr, ok := r.(error)
 | |
| 			if !ok {
 | |
| 				rErr = fmt.Errorf("%v", r)
 | |
| 			}
 | |
| 			err = ExprError{"invalid expression", tokens, rErr}
 | |
| 		}
 | |
| 	}()
 | |
| 	for _, token := range tokens {
 | |
| 		n, err := toNum(token)
 | |
| 		if err == nil {
 | |
| 			e.stackNum.push(n)
 | |
| 			continue
 | |
| 		}
 | |
| 
 | |
| 		op, err := toOp(token)
 | |
| 		if err != nil {
 | |
| 			return Num{}, ExprError{"invalid expression", tokens, err}
 | |
| 		}
 | |
| 
 | |
| 		switch {
 | |
| 		case op.hasOpenBracket():
 | |
| 			e.stackOp.push(op)
 | |
| 		case op.isCloseBracket(), op.isComma():
 | |
| 			var stackTopOp operator
 | |
| 			for len(e.stackOp.elems) > 0 {
 | |
| 				stackTopOp = e.stackOp.peek()
 | |
| 				if stackTopOp.hasOpenBracket() || stackTopOp.isComma() {
 | |
| 					break
 | |
| 				}
 | |
| 				e.applyOp()
 | |
| 			}
 | |
| 			if op.isCloseBracket() {
 | |
| 				nums := []Num{e.stackNum.pop()}
 | |
| 				for !e.stackOp.peek().hasOpenBracket() {
 | |
| 					stackTopOp = e.stackOp.pop()
 | |
| 					if !stackTopOp.isComma() {
 | |
| 						return Num{}, ExprError{"bracket doesn't match", tokens, nil}
 | |
| 					}
 | |
| 					nums = append(nums, e.stackNum.pop())
 | |
| 				}
 | |
| 				for i, j := 0, len(nums)-1; i < j; i, j = i+1, j-1 {
 | |
| 					nums[i], nums[j] = nums[j], nums[i] // reverse nums slice, to get the right order for arguments
 | |
| 				}
 | |
| 				stackTopOp = e.stackOp.pop()
 | |
| 				fn := string(stackTopOp[:len(stackTopOp)-1])
 | |
| 				if fn == "" {
 | |
| 					if len(nums) != 1 {
 | |
| 						return Num{}, ExprError{"too many values in one bracket", tokens, nil}
 | |
| 					}
 | |
| 					e.stackNum.push(nums[0])
 | |
| 				} else if f, ok := e.funcMap[fn]; ok {
 | |
| 					e.stackNum.push(f(nums))
 | |
| 				} else {
 | |
| 					return Num{}, ExprError{"unknown function: " + fn, tokens, nil}
 | |
| 				}
 | |
| 			} else {
 | |
| 				e.stackOp.push(op)
 | |
| 			}
 | |
| 		default:
 | |
| 			for len(e.stackOp.elems) > 0 && len(e.stackNum.elems) > 0 {
 | |
| 				stackTopOp := e.stackOp.peek()
 | |
| 				if stackTopOp.hasOpenBracket() || stackTopOp.isComma() || precedence(stackTopOp, op) < 0 {
 | |
| 					break
 | |
| 				}
 | |
| 				e.applyOp()
 | |
| 			}
 | |
| 			e.stackOp.push(op)
 | |
| 		}
 | |
| 	}
 | |
| 	for len(e.stackOp.elems) > 0 && !e.stackOp.peek().isComma() {
 | |
| 		e.applyOp()
 | |
| 	}
 | |
| 	if len(e.stackNum.elems) != 1 {
 | |
| 		return Num{}, ExprError{fmt.Sprintf("expect 1 value as final result, but there are %d", len(e.stackNum.elems)), tokens, nil}
 | |
| 	}
 | |
| 	return e.stackNum.pop(), nil
 | |
| }
 | |
| 
 | |
| func precedence(op1, op2 operator) int {
 | |
| 	p1 := opPrecedence[string(op1)]
 | |
| 	p2 := opPrecedence[string(op2)]
 | |
| 	if p1 == 0 {
 | |
| 		panic("unknown operator precedence: " + string(op1))
 | |
| 	} else if p2 == 0 {
 | |
| 		panic("unknown operator precedence: " + string(op2))
 | |
| 	}
 | |
| 	return p1 - p2
 | |
| }
 | |
| 
 | |
| func castFloat64(nums []Num) bool {
 | |
| 	hasFloat := false
 | |
| 	for _, num := range nums {
 | |
| 		if _, hasFloat = num.Value.(float64); hasFloat {
 | |
| 			break
 | |
| 		}
 | |
| 	}
 | |
| 	if hasFloat {
 | |
| 		for i, num := range nums {
 | |
| 			if _, ok := num.Value.(float64); !ok {
 | |
| 				f, _ := util.ToFloat64(num.Value)
 | |
| 				nums[i] = Num{f}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return hasFloat
 | |
| }
 | |
| 
 | |
| func fnSum(nums []Num) Num {
 | |
| 	if castFloat64(nums) {
 | |
| 		var sum float64
 | |
| 		for _, num := range nums {
 | |
| 			sum += num.Value.(float64)
 | |
| 		}
 | |
| 		return Num{sum}
 | |
| 	}
 | |
| 	var sum int64
 | |
| 	for _, num := range nums {
 | |
| 		sum += num.Value.(int64)
 | |
| 	}
 | |
| 	return Num{sum}
 | |
| }
 | |
| 
 | |
| // Expr evaluates the given expression tokens and returns the result.
 | |
| // It supports the following operators: +, -, *, /, and, or, not, ==, !=, >, >=, <, <=.
 | |
| // Non-zero values are treated as true, zero values are treated as false.
 | |
| // If no error occurs, the result is either an int64 or a float64.
 | |
| // If all numbers are integer, the result is an int64, otherwise if there is any float number, the result is a float64.
 | |
| func Expr(tokens ...any) (Num, error) {
 | |
| 	e := newEval()
 | |
| 	e.funcMap = map[string]func([]Num) Num{"sum": fnSum}
 | |
| 	return e.exec(tokens...)
 | |
| }
 |